
AD-Ai48 888 THE SHOCK AND VIBRATION BULLETIN PART 4 STRUCTURAL 1/3
DYNAMICS SYSTEMS IDENT..(U) NAVAL RESEARCH LAB
WASHINGTON DC SHOCK AND VIBRATION INFORMAT. SEP 77

UCASIFIED BULL-47-PT-4 F/G 28/li N

mommmmommh..



111111.0 1

flu 1.25 o I=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

' 5
_,tP P AJ%4%. .rvr% .%rc r-,, .,y..... ,* ~ , h a - . - ,, I , , !, 1. ",, . . ..-. .- r% Z



Bulletin 47
(Part 4 of 4 Parts)

0

THE
SHOCK AND VIBRATION

BULLETIN
00 .,''
00 Part 4 - -
o Structural Dynamics, Systems Identification,

Computer Applications

00.

,-0

SEPTEMBER 1977

A Publication of
THE SHOCK AND VIBRATION 0

INFORMATION CENTER
Naval Research Laboratory, Washington, D.C. .

.. ,*, , ,

__ - -.. ;

o g 4..
00

~ A
.1 Office of

The Director of Defense
___ Research and Engineering

Approved for public release; distribution unlimited.

84 11 26 18 .
w w* w w w w w .- win 0

" .... :.,-. w ," i..%..... %- , % ' % - • • .
- . % . *.. . *q ,. ~ ** *. % ~ %~ * ,*,-



-, .. 
,- - ' -*..- -.q

77 -. r-77 7...;

10 1

'.

SYMPOSIUM MANAGEMENT

THE SHOCK AND VIBRATION INFORMATION CENTER .

Henry C. Pusey, Director -

Rudolph H. Volin
J. Gordan Showalter
Barbara Szymanski

Carol Healey

Bulletin Production

Graphic Arts Branch, Technical Information Division, :. -.

Naval Research Laboratory

% %t

.
.5.''. ..

' 'a

-- .. "

7-;. -;U•.;T-,- .* ---

V V._. '-. '-

,, -,~~~~ ,-:- ...ej-- .:'-e-,-. ; -"--'.", -",", - - -_',',' .-.-."''' , .,2'V.7 g,, '' ¢

E: ,::- >,'.-.- .*.....',..,,,' . ,. .,•,--,.-,..,,,.,,, -,:'. - b'9', .+ .



I.T:.:J-: 77

Bulletin 47
(Part 4 of 4 Parts)

THE
SHOCK AND VIBRATION

BULLETIN

SEPTEMBER 1977

A Publication of
THE SHOCK AND VIBRATION

INFORMATION CENTER .
Naval Research Laboratory, Washington, D.C.

The 47th Symposium on Shock and Vibration was held
at the Albuquerque Inn and Convention Center. Albu-
querque, New Mexico on October 19-21, 1976. The

Defense Nuclear Agency, Washington, D.C., the Field
Command Defense Nuclear Agency. and the Air Force
Weapons Laboratory, Kirtland Air Force Base, New
Mexico were the hosts.

Office of
I'he Director of D~efense

Research and Engineering

%d %

%p
% % 41



CONTENTS 0

PAPERS APPEARING IN PART 4

Structural Dynamics

PREDICTION OF GAAS DYNAMIC LASER MOUNTING FORCES USING
ADMITANC TESfNG ECHNQUES.................. ...............

'W.R. Davis, Jr., Air Forc~e'Weapons Laborhtory, Kirtland A FB, NM and
D.L. Brown, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, OH

INFLUENCE OF FLUIDON THE PYNAMIC PLASTIC RESPONSE OF A PIPE9
M.G. Srinivasan, R.A. Valentin,'Argonne Ngational Latoratory, Argonne, IL and>
D. Krajcinovic, University of Illinois at Chicago Circle, Chicago, IL

A THEORETICAL 4NALYSIS.OF THE Q2YNAMIC V~SPONSEOF
CTNSTRUCTION CALEA ............................. 21 -

K.C. Tu, Stone and Webster Engineering Cory oration, Denver, CO and
R.S. Ayre, University of Colorado, Boulder, CO0

MIRIALNVSTGATONOF WATER-SHOCK LOADING OF A CONCRETE

C.R. Welch apd L.K. Davis, U.S. Army Engineer Waterways Experiment Station,N, J1Corps of Engineers, Vicksburg, MS

THE EFFECT OF EARTH COVER ON THlE EJYNAMIC R.ESPONSE OF
HKRDENED,*EINFORCED (PONCRETE qTRUCTURhSJ--------------------45

R.D. Crowson, and S.A. Kiger, U.S. Army Engineer Waterw~rs Experiment
Station, Vicksburg, MS

DYNAMIC 4ESPONSES010F A'SOIL COVERED CONCRETE ARCH TO IMPACT
AND BLAST LOADINGS . ....................... 67

P.T. Nash, US Air Force Armament Laboratory, Eglin AFB, FL and J.H. Smith,
W.P. Vann, Texas Tech University, Lubbock, TX

INSTRUCTURE SHOCKJENVIRONMENT OF BURIED STRUCTURES SUB- e
JECTED TO BILAST INDUCED gROUI4D SHOCK.; .- - - - - -75

S.A. Kiger,t.S. Arm y Engineer Waterwals ExperimntSaiVcsbrM

PRACK P ATTERN O'F AN UNDERGROUND, CYLINDRICAL, REINFORCEDj-
CONCRETE STRUCTURI IdfNDER AN AXITL BLAST LOALN6-----------.89

L.C. Lee ad M.S. Agbabian, Agbabian Associates, El SegundS, CA~

FAILURE OF ALUMINUM CYLINDRICAL SHELLS SUBJECTED T6
TRANSVERSE PLAST LOADINGS" -~ ........ ..-------.... 1il

W.S. Strickland, USAF Armament laboritory- Eglin AFB, FL, J.E. Milton,
C.A. Ross, University of Florida Graduate Engineering Center, Eglin, AFB, FL,
and L.J. Mente, Kaman AviDyne, Burlington, MA

yt w w w w w -- i.%
%. %m % m. e m~~%*e



--. EXTENDED TRANSFER MATRIX METHOD FOR FREE VIBRATION OF ..-

-HELLS OF REVOLUTION. ..... ............. 121
S. Sankar, &oncordia Univ ity, Montreal, Canada'

A PRACTICAL 5CHEME FOR IJNCLUDING SHEAR WALL (PR FLOOR) , - y
STIFFNESS IN YRAME ANALYSIS .................................. 135

R.M. Mains, %Vashingto i University, t. Louis, MO

-4 RAIL OVERTURNING .......................... 149 .,
F. Arbabi, Michigan Technological University, Houghton, MI

". Systems Identification

APPLICATION OF MODERN PARAMETER ESTIMATION METHODS TO .
VIBRATING SRUCTURES ......................................... 155

W.R. Wells, Wright State Uniiersity, Dayton, OH

ANALYSIS OF VIBRATION RECORDS BY DATA DEPENDENT SYSTEMS ...... 161
- S.M. PanditMichigan Technological University, Houghton, MI"

A METHOD OF SYSTEM IDENTIFICATION 34TH AtlJ EXPERIMENTAL
INVESTIGATION ... ............ 175

P.H. Merritt, Air" Frce Weapons Laboratory, Kirtland AFB, NM and'
W.E. Baker, University of New Mexico, Albuquerque, NM

A METHOD FOR THE DIRECT DENTIFICATION 6F VIBRATION

PARAMETERS FROM THE FREE RESPONSE. .......................... 183
S.R. Ibrahim, Old Dominion University, Norfolk, VA and E.C. Mikulcik,

* The University of Calgary, Calgary, Alberta, Canada

LABORATORY IDENTIFICATION OF THE PATRIOT.4AUNCHERqTRUCTURE. 199
T.R. Meyer and C.S. O'Hearne, Martin Marietta Aerospace, Orlando, FL ">,

Computer Applications-

DIGITAL SIMULATION OF FLEXIBLE AIRCRAFT RESPONSE TO .-.

SYMMETRICAL AND ASYMMETRICAL RUNWAY ROUGHNESS ............ 207
T.G. Gerardi, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, OH

CHIANTI - COMPUTER PROGRAMS FOR PARAMETRIC VARIATIONS IN
DYNAMIC SUBSTRUCTURE ANALYSIS ............................... 217 - -

A. Berman and N. Giansante, Kaman Aerospace Corporation, Bloomfield, CT

FREQUENCY RESPONSE ANALYSIS OF COMPLEX STRUCTURES ............ 227
H.R. Radwan and P. Shunmugavel, Sargent and Lundy, Chicago, IL •

COMPUTER AIDED DERIVATION OF THE GOVERNING DYNAMICAL
EQUATIONS FOR A HIGH SPEED GROUND VEHICLE .................... 234

J. Patten and N. Isada, State University of New York * -

iv

% op

Ir 1P 4-. ... 4P ..... .% I, I . . % % ,
:,-. -,..: ,"", -'-, "' '-.-''-- "" G'..':.. ' .'G :. .'-" " "- " "# ;' "" ' " ',"'.".";'",',:._' '._ ? '-,"- '", -."eZ,'- '" Z-,



jm ~ m t n . . .. . L' ." . • , . .

PAPERS APPEARING IN PART 1 '-

Keynote Address
D O

IMPACTS OF SHOCK AND VIBRATION CONSIDERATIONS ON WEAPON r.DEVELOPMENT .°.-.'
Dr. Hua Lin, Assistant Director (Offensive Systems) Office Director of '
Defense Research and Engineering, Washington, DC

Invited Paper •

NUCLEAR HARDENING IN A MISSILE DEFENSE SYSTEM em

Noah J. Hurst, Ballistic Missile Defense Systems Command, Huntsville, AL

Panel Session

DYNAMICS EFFECTS ON RELIABILITY

Shock Analysis

SCALING OF STRONG SHOCK HUGONIOTS
W.E. Baker, Southwest Research Institute, San Antonio, TX

SHOCK SPECTRA AND RESPONSES BY POCKET CALCULATOR
C.T. Morrow, Consultant, Dallas, TX - •

STUDIES OF THE TERRADYNAMICS OF A PROJECTILE
PENETRATING SAND -

L.E. Malvern, R.L. Sierakowski, University of Florida, Gainesville, FL and -"

J.A. Collins, DLYV/Air Force Armament Laboratory, Eglin AFB, FL

HARDENED SYSTEM VULNERABILITY ANALYSIS
J.D. Collins, J.H. Wiggins Company, Redondo Beach, CA

Shock Testing

LABORATORY SIMULATION OF SEQUENTIAL SETBACK AND AERO-
DYNAMIC DRAG EXPERIENCED BY ARMY ORDNANCE PROJECTILES -
A DEVICE, THEORY AND DATA ;

I. Pollin, Harry Diamond Laboratories, Adelphi, MD .'.:

BARREL-TAMPED, EXPLOSIVELY PROPELLED ROTATING
PLASTIC PLATES

F.H. Mathews, B.W. Duggin, Sandia Laboratories, Albuquerque, NM

%. %%. ',

* . .- .

* ' . .. . "". -. . "- - ", "-" . " ... , .. * .S :- : ,, -,' '.t :-** *,- 5 * - '_ ,,% 'r



SHOCK WAVEFORM TESTING ON AN ELECTRODYNAMIC VIBRATOR

W.E. Frain, Applied Physics Laboratory, The Johns Hopkins University,
Laurel, MD ,.

SEISMIC SHOCK WAVEFORM REPRODUCTION AND SHOCK SPECTRA
SYNTHESIS ON HYDRAULIC ACTUATOR

R.S. Nichols, White Sands Missile Range, NM

Isolation and Damping

EXPERIENCES ON SHOCK ISOLATION OF EQUIPMENT IN THE
SAFEGUARD SYSTEM : - *j

M.A. Boyd and C.C. Huang, U.S. Army Engineer Division, Huntsville,
Huntsville, AL

ON THE DETERMINATION AND CHARACTERISTICS OF THE CENTER
OF ELASTICITY

G.L. Fox, Barry Division, Barry Wright Corporation, Watertown, MA

DESIGN OF ELASTOMERIC COMPONENTS BY USING THE FINITE -" b

ELEMENT TECHNIQUE
R.H. Finney and B.P. Gupta, Lord Kinematics, Erie, PA

CHARACTERIZATION OF BULK CUSHION MATERIALS UNDER IMPACT

LOADS USING VISCOELASTIC THEORY "
T.L. Cost, J.D. Dagen, The University of Alabama, Tuscaloosa, AL and
J.E. Jackson, Tennessee Valley Authority, Knoxville, TN

IMPACT RESPONSE MODELING OF BULK CUSHIONING SYSTEMS ON A
PROGRAMMABLE DESK-TOP CALCULATOR

D.M. McDaniel, U.S. Army Missile Command, Redstone Arsenal, AL and
R.M. Wyskida, J.D. Johannes, The University of Alabama in Huntsville,
Huntsville, AL

PAPERS APPEARING IN PART 2

Vibration Analysis

SOME ASPECTS OF VIBRATION CONTROL SUPPORT DESIGN 0
P. Bezler and J.R. Curreri, Brookhaven National Laboratory, Upton, NY

RESPONSE OF A HARDENING SPRING OSCILLATOR TO
RANDOM EXCITATION

J.T. Kayanickupurathu, Research Fellow and J.R. Curreri, Polytechnic
Institute of N.Y., Brooklyn, NY'

NON-LINEAR DYNAMIC RESPONSE OF A MULTI-MASS SYSTEM
WITH GAPS

B. Koplik, M. Reich, Brookhaven National Laboratory, Upton, NY -. _-

vi 0

.44,

% 4"t,

4. %p.
0.*



.-o .'9 .. 

b.

AN IMPROVED DERIVATION OF THE DUNKERLEY-MIKHLIN FORMULA
J.E. Brock, Naval Postgraduate School, Monterey, CA

RECENT ADVANCES IN FAILURE ANALYSIS BY STATISTICAL
TECHNIQUES (FAST)

W.H. Rowan, TRW Defense and Space Systems Group, Redondo Beach, CA .- 

ON THE MEAN LIFE EVALUATION OF A MATERIAL WITH IDEAL ELASTO- Ii.r
PLASTIC BEHAVIOUR, SUBJECTED TO A STOCHASTIC LOADING -

PROGRAMME WITH A FINITE NUMBER OF STRAIN LEVELS
G.A. Philippin, T.H. Topper and H.H.E. Leipholz, University of Waterloo, 9'

Waterloo, Ontario, Canada

FATIGUE ANALYSIS OF MULTI-DEGREE-OF-FREEDOM SYSTEMS UNDER
RANDOM VIBRATION

R.G. Lambert, General Electric Company, Utica, NY

A MATHEMATICAL MODEL FOR THE STRESS AND VIBRATIONAL
ANALYSIS OF THE HUMAN MITRAL VALVE '-

J. Mazumdar and T.C. Hearn, The University of Adelaide, South Australia " -_

THE DECREMENT IN VISUAL ACUITY RELATED TO VIBRATION OF SHAKER,
SEAT, AND OBSERVER'S HEAD

O.F. Hackett, David W. Taylor Naval Ship Research and Development Center,
Bethesda, MD, W.G. Lewis, Naval Electronics Laboratory Center, San Diego, CA, "'
R. Langland and T. Harder, Pacific Missile Test Center, Point Mugu, CA

FREE VIBRATIONS OF UNSYMMETRICALLY LAMINATED CANTILEVERED
COMPOSITE PANELS

E.A. Thornton, Old Dominion University, Norfolk, VA

FUNDAMENTAL FREQUENCIES OF ORTHOTROPIC PLATES WITH VARIOUS
PLANFORMS AND EDGE CONDITIONS

C.W. Bert, The University of Oklahoma, Norman, OK

DYNAMIC RESPONSE OF LAMINATED COMPOSITE PLATES UNDER
RESIDUAL THERMAL STRESSES

C.T. Sun, Iowa State University, Ames, IA

VIBRATION OF COMPOSITE PLATES OF ARBITRARY SHAPE BY THE
METHOD OF CONSTANT DEFLECTION LINES

S. Dharmarajan and F.H. Chou, San Diego State University, San Diego, CA

COUPLED VIBRATIONS OF TURBOMACHINE BLADES
J.S. Rao, Indian Institute of Technology, New Delhi, India

ACCELERATION THROUGH RESONANCE OF MULTI-DEGREE OF -9..'.-

FREEDOM SYSTEMS
F.H. Wolff, A.J. Molnar and A.C. Hagg, Westinghouse Electric Corporation,
Pittsburgh, PA

vii

W . .6

..".'..e,. ,.

W F -• - . - . r d- . NO-. . .. .,. , , .. . . . . . . . . . . . . --' - ' ' ' ' ' ' ;- '



PAPERS APPEARING IN PART 3

Vibration Testing

COST EFFECTIVELY EXCITING VIBRATION FAILURE MODES FOR
LONG-TIME RELIABILITY DEMONSTRATIONS

W. Tustin, Tustin Institute of Technology, Inc., Santa Barbara, CA
* b

SELF-TUNING RESONANT FIXTURES
R.T. Fandrich, Harris Corporation, Melbourne, FL

ANALYSIS OF SINUSOIDAL AND RANDOM VIBRATION ENERGIES
J.N. Tait, Naval Air Development Center, Warminster, PA

EVALUATION OF AN ADAPTIVE FILTER AS A DIGITAL TRACKING FILTER
D.O. Smallwood and D.L. Gregory, Sandia Laboratories, Albuquerque, NM

TOTAL MISSION ENVIRONMENTAL SIMULATION THROUGH DIGITALLY
-' CONTROLLED ELECTROMAGNETIC VIBRATION

D. Hinckley, F.Foley, Boeing Aerospace Company, Seattle, WA and ""
P. Moseley, W. Ross, Hewlett-Packard Company, Santa Clara, CA

A COMPARISON BETWEEN SINUSOIDAL SWEEP AND BROADBAND DIGITAL -O
TECHNIQUES FOR RESONANCE SEARCH AND TRANSMISSIBILITY
MEASUREMENTS

P. Moseley, Hewlett-Packard Company, Santa Clara, CA ,

MODAL INVESTIGATION OF LIGHTWEIGHT AIRCRAFT STRUCTURES USING
DIGITAL TECHNIQUES

R.W. Gordon and H.F. Wolfe, Air Force Flight Dynamics Laboratory,
Wright-Patterson AFB, OH

DIGITAL CONTROL SYSTEM FOR A MULTIPLE-ACTUATOR SHAKER -
D.K. Fisher and M.R. Posehn, Lawrence Livermore Laboratory, Livermore, CA

Instrumentation and Data Analysis

MEASUREMENT OF ANGULAR VIBRATION USING CONVENTIONAL 31
ACCELEROMETERS ,-].x-

[ • P.W. Whaley and M.W. Obal, Air Force Flight Dynamics Laboratory, S
Wright-Patterson AFB, OH

THE USE OF A LOW POWER LASER AND PHOTODIODE FOR
-, DISPLACEMENT DATA

J.E. Cawthorn, Martin Marietta Aerospace, Orlando, FL .-
7 •

GROUT/SOIL INTERACTION AND GROUND-MOTION MEASUREMENT
M.B. Balachandra and J.A. Malthan, Agbabian Associates, El Segundo, CA

a. .. . -.. 1':

-~ viii

%~ %

Zi. .%.--,-._



9..-o. - -9Q.

COMPUTER-BASED TRANSPORTABLE DATA-ACQUISITION AND
CONTROL SYSTEM

D.K. Fisher, M.R. Posehn, F.L. Sindelar and H.H. Bell, Lawrence Livermore
Laboratory, Livermore, CA

Loads and Environments " " " "

VIBRATION INVESTIGATION OF A LARGE TRANSPORT HELICOPTER
W.J. Snyder, J.L. Cross and M.B. Schoultz, NASA Langley Research Center,
Hampton, VA

AEROACOUSTIC ENVIRONMENT OF A STORE IN AN AIRCRAFT
WEAPONS BAY

L.L. Shaw, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, OH -

AN INT',RIM REPORT ON SHUTTLE ORBITER VIBROACOUSTICS
Vilxation and Acoustics Unit, Space Division, Rockwell International
Corporation, Downey, CA,..-"

PAPERS APPEARING IN SUPPLEMENT

STABILITY OF NEW LIGHTWEIGHT 203MM (EIGHT INCH)
HOWITZER IN SOILS

H.M. Cole, Naval Surface Weapons Center, White Oak, Silver Spring, MD
and J.C.S. Yang, University of Maryland, College Park, MD N

APPLICATION OF LIGHT-INITIATED EXPLOSIVE FOR SIMULATING
X-RAY BLOWOFF IMPULSE EFFECTS ON A FULL SCALE '-1
REENTRY VEHICLE . .,

R.A. Benham, F.H. Mathews and P.B. Higgins, Sandia Laboratories,
Albuquerque, NM

%° %. .

e. P. 4-.

,- '.. ' -

ix9:.,, 9'- :.



*." . 1

STRUCTURAL DYNAMICS ',,

PREDICTION OF GAS DYNAMIC LASER MOUNTING - O i

FORCES USING ADMITTANCE TESTING TECHNIQUES

William R. Davis, Jr.*
Air Force Weapons Laboratory "%-. %.
Kirtland AFB, New Mexico

and •

Dansen L. Brown
Air Force Flight Dynamics Laboratory

Wright-Patterson AFB, Ohio .'

Presented are an admittance formulation and test technique for predicting
the mounting point forces of a large airborne gas dynamic laser from
ground measurements. Laser forces were measured during ground test stand 0
firing, and a laser admittance matrix was determined from a shaker test
on a suspended laser. Expressing the laser dynamics independently of its
mounting configuration in terms of a "free response" vector, these results %
were combined with an admittance matrix for the aircraft mounting points -ti t
from a finite element model to make the force prediction. All data pro-
cessing was accomplished on a minicomputer system. The technique is .
generally applicable to the problem of determining the mounting point
forces of a vibration source in one mounting configuration from measure-
ments in a different configuration.

INTRODUCTION the dynamic responses of composite systems from
tests on subsystems. In particular, Karra and

Because of their high speed gas flows and Vargas [1] conclude that the admittance formu- -
combustion processes, large gas dynamic lasers lation is more suited to these problems than -

are a significant source of vibration which transmission matrix or impedance methods, and
greatly affect the structures to which they are they emphasize the necessity for accurate meas- ,.,. .

mounted. For airborne lasers the vibration urement techniques since the dynamic range of
environments must be characterized well before admittance data typically varies over several
tne devices are integrated with aircraft since orders of magnitude.,. 4 '

the forces they generate can affect the struc-
tural integrity of the aircraft and the Here we formulate the dynamics of the
performance of sensitive optical systems. vibration source, i.e. the laser, in terms of

a mounting point admittance matrix for an un- *

One can measure the forces produced by a supported laser and a "free response" vector-.
laser when it is fired in a ground test stand, determined from forces and accelerations measured
but the dynamic characteristics of the test during ground firing of the laser. Together"'. ' '
stand can be quite different than those of the this information completely characterizes the
aircraft and so can the resulting mounting dynamics of the laser independent of its mount-
forces. This paper presents a new mathematical ing configuration. The airborne mounting forces
approach and test technique for predicting the are predicted by combining these results with S
forces generated by a laser at its aircraft an admittance matrix for the mounting points on
mounting points from admittance representations the aircraft fuselage. Special force transduc-
of the laser and aircraft and from force and ers were developed to measure the directional
acceleration measurements made during ground components of the ground mounting forces, and
firing of the laser. Experimental results from several techniques were used to insure adequate - -

the application of the technique to a large gas dynamic range and accuracy in the recording and
dynamic laser at the Air Force Weapons Labora- analysis of experimental data. By working ex-
tory are included. clusively with random and transient analyses, 5

advantage was taken of the digital processing
Several researchers (1-6] have used admit- and fast Fourier transform programs available

tance or impedance techniques to solve for with mini-computers; and considerable experi-
interface vibration environments or to predict mental time was saved by using random test

*Assigned to the Air Force Flight Dynamics Laboratory, co-located at the Air Force Weapons Laboratory.
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techniques rather than sine sweeps. The tech-
nique is generally applicable to the prediction
of mounting point forces generated by a vibra-
tion source in one mounting configuration fromF
measurements made in a different mounting = .F(F-yconfiguration. I FFz ' ; F I ,r-

THEORETICAL FORMULATION 2z

We begin by writing a frequency response and -.

." equation for the laser mounting points. The
laser consists of two identical stages each rA
with three mounting brackets which transmit tAl 2 x
force but no moments in a total of six degrees 1 = y A2= A2  A3  3 N
of freedom: a forward bracket in the Y and Z (2)
directions; an aft bracket in the X, Y, and Z Azy (2)

% directions; and a drag link (assumed rigid) in 2
the Y direction. The bracket mounting locations
are labeled 1, 2, and 3,respectively,as shown points accelera-
schematically in Figure 1. In the following tions in nine degrees of freedom even though
we consider only one of the two stages. the forces are zero in three of these dof, but

we need only consider accelerations in the same . ,
dof in which we have forces.

The transformed accelerations are related
NOZZLE MANIFOLD COMBUSTOR to the transformed forces by a frequency re-

sponse or admittance matrix:

H" H H H
1 11 12 13 14 F2A , 2  IHH2 1 H

322 323 24 F
A3  H 32  H33  3 4  F

, 
HH H (3) -

Here each element, Hij, of the admittance matrix
is itself a matrix. The vector, F4, and the

admittance elements, Hi4, represent all the .

DIFFUSER internally generated forces and moments in the
laser and their corresponding transfer admit-
tances. Here we use the term admittance,
although inertance might be more correct since
all responses are expressed as accelerations

.' )3 --- for experimental reasons.
3

" Re-writing Eq (3) as the sume of two parts, '
we have

11r [ H 1  3

[H - H2 H1  ' F1 I [H r2 1"2  H21  22 23 [H 4]
Fig. 1 - Laser Mounting Points A3  32 33 H34  (4)

Since the laser produces transient rather The first term on the RHS of Eq (4) is the prod-
than steady statefocsweepssteorsforces, we express the forces uct of the admittance matrix for the laser
on the laser and their corresponding accelera- mounting points and the transformed force vector 0
tions in the frequency domain by their Fourier for these points, and this product is the com- -.

transforms Fi and Xi: ponent of the transformed accelerations induced

by the compliance of the structure to which the
laser is mounted. The second term is the com-
ponent of the transformed accelerations which
is independent of the mounting structure. If
the laser were fired while suspended in space,

2

,%. Z'.;t
% -. %. %%.,'" __ .. "4 %" • _,
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the mounting point forces would be zero; and
all mounting point response would come from -i i i Hl '
the second term. We call this second product H1 I HI2  Hf3  Ff H11 H1 2 H13  1 *F..'"A.'
the "transformed free response vector" and re- H I H 2  H'3  F =F 21 2 H2  'F"..
arrange Eq (4) as LH21 Hi2  2 LH3 1 H3 2 H3 3  F.

FR ;'.O.

AH11  H12  H 13 1  F (8)*.-

A2~ =A2~ -H H H231 F2  (5)

"3 F LH31 H32  H3 F3  Solving for the transform of the forces acting
FR on the aircraft mounting points,

6xi 6xi 6x6 6xi -l •

Fl Iil H12 Hi'1 11H12 H3 " ,.-
I 22 H311 H21 H2 2 H2 3 II (g)

where subscript FR denotes free response. i 2  j H' 221 23~ ()The free response vector is the basis for RL31 HH 3 3 -.. A

our airborne force prediction, so we must
solve Eq (5). The admittance matrix may be
determined by softly suspending the laser and This can be inverse Fourier transformed to
exciting the mounting points with known forces produce force time histories which can be
as described in the next section. The trans- applied to the aircraft finite element model
formed acceleration and force vectors can be to predict laser induced responses at other -p
determined from experimental measurement of points on the aircraft. '
the mounting point forces and accelerations
when the laser is fired in its ground test The scheme presented here can easily be
stand. generalized to an arbitrary number of degrees

of freedom for application to other hardware.
Next to determine airborne mounting forces, 4. ,-

we must consider the compliance of the air- /..
craft mounting structure. Writing a frequency LASER ADMITTANCE DETERMINATION -

response equation for the aircraft mounting
points, we have To determine the admittance matrix in

Eq (5), the laser was suspended on elastic
cords and excited at each mounting point in

I 1, H12 Hj3  IF ( turn with a single electrodynamic shaker.
jH H Hi 3 (6) Details are shown in Figure 2. The laser was

21 22 H' i essentially freely suspended above 3 Hz, the
A H,2 Hi-3 F- natural frequency of the suspension system.

Broadband excitation at 10 to 20 lbf RMS -

was applied through a force gauge to each of
where primes denote the aircraft. Here we the six dof of interest while the acceleration -ignore the aircraft internal forces since their response was measured in all six dof. The "'
effects will be negligible compared to those complex admittance elements were calculated
of the laser. The primed admittance matrix p dmitane enss eral cuated

can e dterine frm a inie eemet mdelby dividing the cross-spectral density ofcan be determined from a finite element model acceleration response and force excitation by
of the aircraft or by experiment, the auto-spectral density of the force. Shaker . si-S

excitation was applied in two ranges, 5-300 Hz
When the laser is mounted in the aircraft, and 5-1000 Hz, so transducer amplifier gains

we have the following coupling conditions: could be adjusted to insure adequate dynamic

range in both the low and high frequency re-
gions. The final results were combined to

A" Fl F-produce a continuous admittance function for A%
and F = - (7) 5-1000 Hz. The adequacy of the dynamic range ,-

F, of the signal conditioning system was checked
3 3 33 during all data gathering runs by comparing . .

spectral analyses of the data with analyses -

of data recordings under identical conditions
but without vibration excitation. This was

So by the first condition we can equate Eqs (4) done using a real time spectral analyzer. As
and (6); and using the second condition, wehave a further check on data quality, coherence -- •.

functions for force and acceleration were cal-
culated for each admittance element with good
results. "

.. A
3 A, A , A-%
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all other calculations in this report were done
on a Raytheon model 704 minicomputer system

I using standard FFT algoritms.
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Fig. 4 - Laser Mounting Brackets with Force Measuring Elements

calibrated directly in force units. To check thrust compared well with the calculated thrust,
the calibration results, as well as to insure providing a double check on the mount calibra- -
adequate strength of the mounts, NASTRAN finite tions.
element models were constructed for the forward \
and aft mounts; and good agreement was found The Fourier transform magnitudes of the "
with the experimental results. force and acceleration time histories are also \.

shown in Figures 5 and 6. They are only
Analysis of the initial acceleration data plotted to 100 Hz because this was the limit

from the laser firings showed a large jump in of accuracy for the final force prediction.
response near 500 Hz, so the accelerometer out- The analysis bandwidth for these and all sub-
puts were low pass filtered at 500 Hz for sub- sequent calculations was 0.3 Hz. Using the
sequent data recordings to insure adequate Fourier transforms of force and acceleration
dynamic range in the low frequencies. All and the admittance matrix to solve Eq (5), we
significant force levels were below 500 Hz. have the free response acceleration which is
Phase differences between the accelerometers plotted in Figure 7 in both the time and fre-
and strain gauges were accounted for using the quency domains for the same dof plotted in -. '
same technique mentioned in the last section. Figures 5 and 6. Free responses were calculated
However,instead of exciting the transducers on for each dof for each of the ten laser firings.
a shaker, a broadband reference signal was in-
serted simultaneously into the transducer leads
and recorded. AIRBORNE FORCE PREDICTION

Data was recorded from ten laser firings Having the free response, we need only the , .
on two sets of mounts, one set for each of the aircraft admittance matrix to solve Eq (9) for
two laser stages. All firings were 1.6 sec the airborne forces, and we obtained it from '
long. Typical time histories for force and a NASTRAN dynamic model of the aircraft 0
acceleration are shown in Figures 5 and 6. fuselage. The model contained 54 modes up to
Since the strain gauge bridges were connected 100 Hz which we considered to be its limit of

to DC amplifiers, both the static thrust and accuracy. A typical admittance element from ' ,
dynamic components of the laser forces were the model is shown in Figure 8. J
recorded. Figure 5 shows the force in the
thrust direction, and the static component Solving Eq (9) for each of the ten firings,
shows clearly in the plot. The measured static we have an ensemble of airborne force vectors.

, -. %
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Fig. 7 Free Response Acceleration - Aft Mount, Vertical ,

Figure 9 illustrates the airborne force time Figure 5. There is no static thrust component "'-"''
history correspondinq to the time history in in this result because the accelerometer and '",%

, admittance data were not recorded below 5 Hz.
o The most severe time histories in the ensemble

.0 _1_ . .. . . ... . ... .. ]

cwill be input to the NASTRAN model to predictFg7-FeRepn Aceearesponses at other locations in the aircraft•

Figure ilutrts harorefIn the future the aircraft admittance will

be measured experimentally, which hopefullye

-- / i L. , will enable the prediction to be carried out to -.- -
500 Hz, the frequency limit of the laser firing
data.. - ,

CONCLUSIONS *,U, - - I l ' The force prediction scheme can be imple-

'* :\, v imented experimentally by taking advantage of
U digital processing and random shaker excitation
= techniques, and it provides a practical method

of solving interface vibration environment
IL I- - problems. Further savings could be realized . --

by automating the entire procedure on a mini-
I computer based analysis system and using tran-

sient impact excitations in place of shaker
i excitations to measure admittance functions.

-......... Special experimental techniques must be
10 02 used to assure accurate data gathering. For

admittance measurements this includes calcula-
Frequency (Hz) tion of coherence functions, and for all data

phase shifts between transducers must be care-
Fig. 8 - NASTRAN Admittance Element for Aircraft fully accounted for.
Mounting Points - Forward Mount Lateral Response,
Forward Mount Lateral Excitation
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= . INFLUENCE OF FLUID ON THE DYNAMIC PLASTIC RESPONSE OF A PIPE*

,' ., M. G. Srinivasan, R. A. Valentin- ..
.', ~~Argonne National Laboratory " - -
.- ~~~Argonne, Illinois -"_.'-

and

D. Krajcinovic
University of Illinois at Chicago Circle

a- Chicago, Illinois

' IThe problem of the dynamic plastic deformation of a pipe subjected to internal
pressure pulse and surrounded by a fluid is studied. Through dimensional-
analysis and simplifying assumptions the number of parameters influencing the
solution is reduced to a minimum. The results of an analytical-numerical
solution are presented and discussed in terms of these parameters.

INTRODUCTION cavitation and turbulence might develop espe-.' .
cially in the later stages of deformation. An

In many applications of practical signifi- analytical study of a model as complex as this -
cance it is necessary to determine the load is impossible. Even somewhat simplified models
carrying capacity of structures inmersed into might pose tremendous numerical difficulties.
fluids and subjected to dynamic loads. For Purely numerical schemes are quite expensive a. ,,
example, a conventional design of heat exchang- and not always entirely reliable in the case of
ers emphasizes pipes enveloped by fluid. A interaction problems. It appears therefore
sudden surge of pressure inside the pipe (asso- proper to study the simplest possible problem
ciated with a postulated accident of a certain analytically, derive basic relations and pre-
kind) might cause unacceptably large plastic pare the ground for a comprehensive series of . i
deformations in the pipe. Our intuition and experiments.
some previous results of beam and plate prob- %
lems [1,2] indicate that the beneficial In order to establish a basis for the gen-
influence of surrounding fluid on final plastic eral formulation it is necessary to first list
deformations cannot be neglected. It is quite all of the parameters defining the response of %- %. a,

surprising that this problem has not been stud- the system. "P
led in the literature nearly as much as one
would have expected. While the literature on The geometry of an infinitely long circular '
hydroelasticity on one and dynamic plasticity cylindrical shell is defined by the radius of -
of structures in vacuum on the other hand is its middle surface, R, and the wall thickness,
rather abundant there are but few papers related H (Fig. 1). Since the dynamic response involves
to the topic at hand. It is, therefore, appro- the inertia of the shell, the mass density p .,'"-",

- priate to discuss at least basic features of (assumed constant) is defined as the inertial
- this problem. parameter.

* FOI!4ULATION OF THE PROBLEM H

An exactly formulated model of the problem -

would obviously comprise

a circular cylindrical shell responding liii
in an elastic-plastic mode with the pos- -____ "___
sible influence of strain rates on the P(Z~t)
magnitude of yield stresses.

a viscous and compressible fluid.
It is also possible (although not quite as prob- Fig. i. Geometry and Loading of

Fable as in some hydro-elastic problems) that Shell lImmersed in Fluidy #Research performed under the auspices of the U.S. Energy Research and Development Administration.
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The behavior of the shell material is de- The external load is obviously defined by
- fined by a set of parameters related by the its intensity, pressure-time history and depen-

constitutive equations. If in the first approx- dence on spatial co-ordinates 0 and z. Even if

imation we consider the material to be rigid- we restrict ourselves to axisymmetric loads

ideally plastic its behavior is characterized P = P(z,t) the variety of possibly interesting

by the yield condition. The only significant functions is still too large to allow for a

generalized internal forces in the shell are reasonable discussion. Thus, it appears essen-

• the axial bending moment, M and the circumfer- tial to reduce the number of load related para-

* ential (hoop) normal force N. The yield condi- meters by means of a correlation technique

tion (Fig. 2) therefore depends on My and NY, proposed by Youngdahl [4]. Through correlation

" the yield values, defined by an arbitrary pressure P(z,t) is reduced to an -.

equivalent constant pressure Pe of duration te
M = - HR P uniformly distributed over a portion of length

y 4 0 2 Le of the cylinder (Appendix A). In effect, -

N = R P (1) using the load correlation technique the loady 0 is completely defined by the set of three
.€p = a i . ' ..' .%

0 Y H parameters Pe, Le, and te representing the in- . ..
o R tensity, the length of the loaded region and P

" where ay is the yield stress. Though My and NY the duration of the load pulse, respectively. ,.,,o, EJ

" are defined in terms of the three independent The gravity forces (i.e., the parameter g) can k.
parameters H, R, and Po, we need only Po as the be neglected in comparison with the other forces.

single parameter to characterize the material "
behavior, since H and R are already included In addition, since the process is not '='r--

- among the geometry parameters, stationary it is necessary to include as a para- .

meter time t, as well as the co-ordinates z and,°--.

N r defining the position of the observed point.

DIMENSIONAL ANALYSIS

A Ny
On the basis of the previous discussion it O

is possible to say that, for instance, the final
deflection of a point on the middle surface of .'.'..

the shell defined by the co-ordinates (z, r- R)
can be written as

* - -sM Uf U f(R,H;p; P; pf, v, K; Pe Lte'te;z) (2)

In equation (2) semicolons separate geometric,
inertial, strength, fluid, load and spatial
groups of parameters. Using the well known "

__________ theorem (see, for example [5]) the displacement

D -N C Uf can be written in terms of three basic in-
'' dependent parameters (appropriately selected)

and a set of 11 - 3 = 8 non-dimensional numbers.
Fig. 2. Yield Condition In other words, it would be necessary to examine

the dependence of Uf on the magnitude of eight
We should immediately note that a rigid- non-dimensional parameters characterizing the

ideally plastic model approximates the actual system.
material behavior sufficiently well only if [3],

• (a) the kinetic energy of the imparted load This would obviously be a formidable task.
significantly exceeds the maximum elastic deform- An engineering approach in reducing this task 4 -
ation energy of the structure, and (b) the dura- to a reasonable level would obviously include a
tion of the load is short in comparison with the certain amount of analysis and use of previously
period of natural vibrations of the system. An published data related to our problem.
attractive feature of the rigid-ideally plastic

model is the possibility of model refinement
through gradual addition of other effects (such Compressibility

as strain-rate sensitivity, large deformations, I p o mh e r m'-' In a paper on a somewhat related problem of "

etc.) without necessarily compromising the hydrodynamic impact, motivated by problems en-
4 tractability. countered in design of Apollo command module,

The response of the fluid, assumed to be Nevill, Morales, and Horowitz [6] studied the
influence of compressibility and viscosity on

infinite in extent, is defined by its density the pressure exerted by fluid on the shallow
pf (considered constant), kinematic viscosity x spherical shell. According to their tests on
and compressibility K. (We could use the acous- liqids (hl Acettind wter weti velcityinstad o K t chaacteize om- two liquids (methyl acetate and water whose '

*tic velocity instead of K to characterize com- compressibility varies by a factor of 2.35) the
pressibility). variations in liquid response (within the range

studied) are negligible. We should also mention

* 10 '
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that the compressibility in hydrodynamic impact P P L e t 2

problems is of some interest only in the case U H f( H (3)

of blunt bodies and even then only during an o2V,

extremely short initial period while the veloc- Since no independent non-dimensional parameters

ity of the fluid along the contour of the im- could be formed by any combination of p, R, Po,

pacting body is supersonic. Since in our case it is clear that f is a function only of the

the velocity of deformation rises gradually five non-dimensional parameters. Further, if

from zero there Is no reason to believe that we assume that as in the case of the shell de- .

the conclusion made in [6] should not be ex- forming in vacuum, the maximum deformation is

tede siona ur case . U fse Appendi ()

tended to our case. We should also point out directly proportional to te
2 

(see Appendix B),
that the correction for compressibility is as then % %

rule always less significant in three dimen- 
Por

2  
p P L eH"

sional cases. U f p f(-, ,",) (4) "'--

0

viscosity where fl is a non-dimensional function of the

four given arguments only. Alternatively we canThe already mentioned paper (61 presents epesU s" .. %

further results of a series of tests with water epss-a0
and castor oil. Although the Reynolds number P t 2 pf P L " '

0e e e H
was varied by a factor of 2447 (0.545 for castor U= - f , - -- ) (5) .*"" i

oil and 1334 for water) and the impact speeds 
P OH 2  P 

"O

from 9 to 16 feet per second 
no significant 

o"iR

difference in measurement of permanent deforma- RESULTS AND DISCUSSION

P tions could be detected.
Rdy M Before discussing the numerical results for • .

-" Adopted Analytical Model Uo, it is necessary to point out certain re-

preceding considerations strictions imposed on the range of Pe/Po and

On the basis of pLe/R for the solution to be valid. These re-

it appears reasonable to start from a model strictions arise as a result of simplifying

consisting of a: assumptions.

-rigid-ideal]v plastic thin walled shell The mode of plastic deformation is assumed -

of infinite length submerged into to be characterized by a stationary plastic
hinge circle at z = 0 and two moving hinge cir-

-an incompressible and inviscid fluid cles at z ± (see Appendix B and [7]). For %'

infinitely extended in all directions, plastic deformation to be initiated Pe must be

.4 greater than the limit load which is obtained

Such a formulation greatly facilitates from the static limit analysis [4] and depends

analyses although the problem seems complex only on the parameter Le/VlM . If Pe is less

enough to prohibit a closed form analytical than the static limit load no deformation will

* solution. A brief recital of analyses published occur.

elsewhere [7] is presented in Appendix B. Al-

though the problem is still not amenable to a When plastic deformation occurs in the mode

closed form solution in a strict sense of this described above, the condition that the bending

word, the solution is simple enough to 
enable moment cannot be less than -M at the hinge cr-

a reasonable qualitative and quantitative study cleat z = 0 implies (see [4])

of the problem without excessive computation.

In practice the main interest obviously-.0 at z 04

lies in determining the maximum final, plastic 3z
2

deformation of the shell characterizing in a

way the load carrying capacity of the structure, When the solution for M is substituted into the a "

We should point out that in contrast to static above inequality we find that Pe/Po must be

limit analysis the dynamic response of a rigid- less than a critical value which is a tunction

ideally plastic structure is characterized by of H/R, Le/R and of/p.

finite deformation but allows (theoretically)

* infinitely large load intensities. Thus, Thus we note that the solution described in ' .
instead of a collapse load (corresponding to Appendix B is valid only if Pe/Po is between the

reaching yield limits at sufficient number of lower and upper critical values. Figures 3(a)

locations - plastic hinges) we have a "collapse to 3(e) illustrate the range of these critical *

deformation" corresponding to a deformation values as a function of Le/YTHi for various

I considered excessive (either causing rupture values of H/R, Pf/O. In these figures the solid
or presenting functional failure), line denotes the minimum value for Pe/P'o Since

this value corresponds to the limit load it
-, According to equation (2) and previously depends only on Le/v'i and is independent of

discussed simplifications (neglecting viscosity, H/R. The broken lnes of Figs. 3(a) to 3(e).

v, and compressibility, K, of the surrounding denote the maximum permissible values for Pe/Po

fluid) the maximum final deformation, i.e., for various values of Pf/P. For a pipe

Uf at z -0, denoted by Uo can be written as:

i'.°  e .1 ,
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surrounded by vacuum Pf/P = 0. From the solu- dimensional w parameters in a different way.

tion given in [4], it is seen that for this
case also, the maximum permissible value of REFERENCES
Pe/Po depends only on Le/Ii-i and does not de-
pend on H/R. Three practically meaningful 1. D. Krajcinovic, "Dynamic Plastic Response
values of 0f/P have been chosen for illustra- of Beams Resting on Fluid," Int. J. Solids
tion in these figures. These correspond to and Structures, Vol. 11, pp. 1235-1243,
possible combinations of fluids such as liquid 1975.
sodium, water and a two-phase mixture of steam
and water and pipes of stainless steel and 2. D. Krajcinovic, "Dynamic Response of
copper. Circular Rigid-Plastic Plates Resting on

Fluid," J. Appl. Mech., Vol. 98, No. 1, .

In the course of the solution for the pp. 102-106, March 1976.
plastic deformation Uo, it is assumed that
/R < 1, in order to make the asymptotic evalu- 3. P. S. Symonds, "Survey of Methods of

ation of the fluid back-pressure possible. Analysis for Plastic Deformation of Struc-

This is equivalent to the restriction, Le/R< 1 tures Under Dynamic Loading," Report .
[7]. Therefore the solution described in BU/NSRDC/I-67, Division of Engineering,,•. '-

Appendix B is valid only when Pe/Po lies within Brown University, 1967.

the range indicated in Fig. 3(a) to 3(e) and
Le/R < 1. 4. C. K. Youngdahl, "Correlating the Dynamic

Plastic Deformation of a Circular Cylindri- "

From Fig. 3(a) to 3(e) we see that the cal Shell Loaded by an Axially Varying
permissible range of Pe/Po narrows to a small Pressure," Report ANL-7738, Argonne '. -
band as Le//RH > 1 for almost all practical National Laboratory, 1970.

values of of/p. But for Le/vf- < 1/2 it is
seen that the upper limit for Pe/Po is very 5. L. I. Sedov, Similarity and Dimensional ' .

large. Therefore we choose a value of Methods in Mechanics, Academic Press,
Le/vRfH =i .52 for illustrating the results for New York, 1959.
U.. In Fig. 4(a) to 4(e) the non-dimension- O

alized value of U0 is drawn as a function of 6. G. E. Nevill, Jr., W. J. Morales, and

Pe/Po for various values of H/R and Of/P. J. M. Horowitz, "Studies of Parameter" *.

Significance in Shell-Liquid Impact," AIAA

First we note that for the case of the Journal, Vol. 6, No. 8, pp. 1511-1514,

pipe surrounded by vacuum Aug. 1968. %

P o 2 P L 7. D. Krajcinovic, M. G. Srinivasan, and
U°  e g , eI for Of/P = 0 (6) R. A. Valentin, "Fluid-Plasticity of Thin 9

p H 'Po ARH Cylindrical Shells," Proceedings of the
13th Annual Meeting of the Society of

which may also be verified from the analysis Engineering Science, Nov. 1976.
in [4]. Comparing (5) and (6) it is seen that
when there is no fluid surrounding the pipe, 8. D. C. Drucker, "Limit Analysis of Cylindri-
Uo does not depend on H/R. When Of/P 0 0, we cal Shells Under Axially Symmetric Loading,"

need H/R in addition to Le/vRi since the back- Proceedings of the First Midwest Conference
pressure term cannot be expressed as a non- on Solid Mechanics, pp. 158-163, 1953.

dimensional function involving only Le/r.. .

9. P. G. Hodge, Limit Analysis of Rotationally
" Finally Figs.4(a) to 4(e) are seen to Symmetric Plates and Shells, Prentice-Hall

clearly demonstrate the beneficial influence Inc., Englewood Cliffs, New Jersey, Ch. 3,
of the presence of the fluid in reducing the 1963.
plastic deformation, a measure of damage. It
is seen that this influence is greatest for APPENDIX A
values of Pe only slightly larger than the 0
limit load and that a reduction in plastic Determination of the Correlation Parameters
deformation of the order of 30% is observed
even for large values of Pe/Po. Therefore we The axisymmetric pressure P = P(z,t) is
conclude that for a realistic estimate of assumed to be of the form
damage due to impulsive pressure pulses the

influence of the fluid should be taken into P(z,t) - O(z)P(t) 0 < Iz < L
account. (A.1)

.- IzI • L >
It should finally be noted that the pres-

ent analysis can be extended to deformations in where O(z) is the load shape which decreases
a different mode (having more than three monotonically with jzI, Y(t) is the pulse shape ..

plastic hinge rings). Solutions for the final and L is the half-length of the loaded region.
plastic deformation Uo will again be given in An equivalent rectangular pressure distribution
form of Eq. (4) or (5). However, the function in space and time is determined which produces
f or f2 will obviously depend on the non- the same final plastic deformation as the

_,.e ,.* *t .,' "17 . .
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actual loading. The functions 1(z) and '(t) P f T (A.1O)
are replaced by effective constant values 0e e e e
and 'e respectively, acting over an effective
half length Le for an effective duration te. and the equivalent rectangular pulse is

The effective values are given by P(z,t) = Pe Izi s Le and 0 K t s te 

rz 2 = 0 jzI > L or t>t %lt( z ) dee•
ff d(A.2) Thus the correlation parameters Pe, Le, and te

e completely define the loading equivalent to the
2 z(z)dz actual loading P(z,t). e v n o

and APPENDIX B 0

f T(t)d Dynamic Plastic Response of Pipe Surrounded ..
by Fluid

'I' =(A.3)
e

=  
f The equation of motion for the shell is

2 (t-ty)(t)dt

y 
a
2
M N aV

P - - L0H- (B.1)2 f R at
where Zy is the initial location of the plastic ;z
hinge, and t. and tf are the times when plastic
deformation Legins and ends, respectively. For where M is the axial bending moment, N the hoop

* the initial yield condition, standard limit force, V the radial velocity of the points on

o analysis gives: the middle surface of the shell, and P and Pf
are the applied pressure pulse and the fluid

2 z 2zy back-pressure respectively.yzRH I'y'(z)dz - zI Yzc,(z)dz=0(A)
(zRH fZ Y fA4 "' i

y 0 0 During plastic flow, four different defor-

and mation configurations or modes may appear (see 4,
and [4]). Of these four, only that particular mode

which is common for most loadings is considered.

SoH z This mode is characterized by a stationary .. ,

- ffi j (z)dz (A.5) hinge circle at z = 0 and two moving hinge .,*
y R y O circles at z = t C(t). Assuming that the yield

condition in the M,N space is defined by the
where O is the yield stress and limited interaction curve (see [8,9]) we have

y the following boundary conditions for z > 0 " "
-"~~~ -y Tf (ty (A.6)".- -.

y y z 0 M -M N= N
y y

" The solution of Eq. (A.4) gives zy. Subse- M N f N (B.2)
J quently, ty is obtained as the smallest value y y

of time satisfying Eqs. (A.5) and (A.6). An 0 < z < -M < M < M N = N
estimate of tf is obtained from the approxima- y y y
tion

t f where the yield values My and Ny are given by .

(tf ty)Yy Z '(t)dt (A.7) 
1  

yf-- y t M 1 HR Po •"
t y 4 0

The effective half-length of the loaded N y RP (B.3)

region is given by and y o (B3

fL P0 f o -
L= O (z)dz , (A.8) o yR

e fe 0 with y being the yield stress.

and the effective duration of the pulse is The deformation mode and the flow rule
4 given by associated with the yield condition suggest a 0

solution for V of the form

t tf '(t)dt (A.9) t"'""1""""% e .t WV~t 01 z,......
y V(z,t) (B.4)

* Finally, the effective pressure is defined as 0 > C

' 18 * = .,
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-..- . •" , . -. W



Expression for Back-Pressure polynomials in C/R. Four numerical coeffi-
cients for each of these two polynomials are

The governing equation for the flow of the obtained from the above mentioned regression
potential fluid is analyses. Eq. (B.9), the expression for back-

pressure, is therefore given by

a2F +r2- (B.5) r ) dVr
2  

r z Pf 2f 0 . ,.Dr r a P PR(g+ (fl + g (B.13)

where F(r,z,t) is the fluid velocity potential. Solution of Shell Equation

The boundary conditions are given by:

geSubstitution of the expression for Pf

a = Vgiven by Eq. (B.13) and the correlation param-
(1.6 eters obtained as described in Appendix A
(B.6) reduce Eq. (B.1) to the forma F O F "-'e :

0, -L 
- 

0 as max (r,z) {H'._

The solution of Eq. (B.5) will give the fluid az
2  L -P- fo

back-pressure on the pipe as --f"g '=
-PfRgl } C] d r "

a F (B.7)at = Of r=R 0_ z _<C, 0 S t _<t e  (B.14) ", ,",.C

e

But in view of Eq. (B.4) we may write aH g

F(r,z,t) - V (t) f(r,z) (B.8) a2 -o {pH+pfRgo) pH
o az

with C being treated as a constant. Then Eq. dVo
(B.7) becomes -pfgl dt

dV 0 _< z _< C, t > t (B.15)
Pf = -Pff(R,z) -- (B.9) e

This equation is subject to the boundary con-
Substitution of Eq. (B.8) into Eq. (B.5) leads ditions given by Eq. (1.2).
to the form

For the interval 0 _S t I te we assume a
2 a2 0 trial solution of the same form as that for

a 2
+ rr +  0 (B.) a shell deforming in vacuum (see [4)), viz.ar2  r z2  .2

C(t) =z
K1and the boundary conditions (1.6) become (.6

10-~ r =R z < Vo(t) "=- t ''

af -
ar where zI and K I are constants. Substituting

0 r = R z > C (B.11) the above expression into Eq. (B.14), inte-
grating the resulting equation twice with

-af 0 as max (r,z) respect to z and making use of the boundary
Dr 0 z conditions, we obtain two non-linear algebraic

equations for z1 and K1 . These are solved by
After introducing the Fourier cosine Newton's iteration method.

transform, we obtain a solution of Eq.(B.10)

in the closed form of an integral. The argu- Integrating Eq. (B.15) twice with respect
ment of this integral is rather complicated to z and making use of the boundary conditions,

and the integration is performed in three we obtain s e i ym c ul a2
ro-L'"" stages using asymptotic formulae and Filon's. .. .''.

method. In order to make this numerical solu- dV -P (C 2 + 3RH)o 0
tion amenable to substitution into Eq. (B.1), dt 2 + 1 W
the result is subjected to a series of poly- {2tpH + pfRgo }
nomial regression analyses which suggest the (1.17)

*form -PR(g ) ~ d =o 0 - =2 ' 4...

f(R,z) - (i) + g- (R) (B.12) dt C3 0 H I
wher -i d (g) -i TO(pH - pfRg 1

where go and g, are non-dimensional cubic
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where= C~) Es (B.17) are valid in
t<t< fee t f stetime at which ma-

tion ceases, i.e.,

V 0 t f 0 (B.18)

We also define

C= - (t f (B.19)

f fb

and from Eqs. (B.17) and (B.18) derive a

% ~non-linear algebraic equation for Cf. This
equation can be solved numerically since it
does not explicitly involve t. Exchanging the

* Independent and dependent variables t and C,
we recast 0qs. (B.17) as

dV
o dtG

dC dC 1

and (B.20)

where VOW~ and t(C) are the solutions sought. .
The "initial" conditions for Eqs. (B.20) are
given by N~ P.

t(z- = te B

K .

V (z1 )= l

Eqs. (B.20) which constitute a system of non-
linear ordinary differential equations are
solved numerically.sc-

SIn view of Eqs. (B.16) and the form of the %t

solution of Eqs. (B.20), the maximum plastic
deformation is given by

[-.'t Kt 2 C d(12 . ."o*

f 2PH oz 0 d
1

Since 1) and VOW are obtained numerically,
U-(tf) is also obtained by numerical quadrature.

Discussion

Voice: In your second slide you showed your-...
' independent and dependent variables and your

notations in dimensionless form using simili- . ..

tude techniques; it looked as if you had more *
that three repeating variables to get your non-

dimensional terms.

Mr. Srinivasan: These are the only three
ndependent dimensional quantities that cannot

be put into an independent non-dimensional form.

j,%g
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A THEORETICAL ANALYSIS OF THE DYNAMIC RESPONSE

OF CONSTRUCTION CAB3LEWAY SYSTEMS

Kuen-Chun Tu
(Former Graduate Student, University of Colorado)

Stone & Webster Engineering Corporation
Denver, Colorado-

* and

Robert S. Ayre
Professor Emeritus,

Department of Civil, Environmental, and Architectural Engineering
University of Colorado0

Boulder, Colorado
%

Construction cableway systems were modeled mathematically in
lumped parameters, the differential equLations of motion writ-
ten, and dynamic responses in bucket and carriage displace-e
ment and cable tension calculated. Vibration amplitudes and
maximum cable tensions are presented in the form of response
spectra (nonlinear system). A trial method of searching for
optimum kinematic paths of the bucket is proposed and illus-
trated by a numerical example.

.

INTRODUCTION If they are operated slowly, static
analysis is adequate, but for high

For many years cableways have been speed operation it is desirable to in-
commonly used in heavy construction in vestigate their dynamics. This paper
difficult terrain, for example, in the presents, for some highly simplified

Uonsvruction of high concrete dams cases, the maximum amplitudes of oscil-
[l- . Construction cableway systems lation of the bucket and carriage and
(see Fig. 1) are nonlinear, multi- the maximum forces in the cables. Also%
degree-of-freedom vibration systems investigated is the selection of the
which are subject to transient excita- hauling and hoisting functions with
tion functions. It appears, however, the aim that the operating times and
that their analysis and design have amplitudes of vibration be kept within
generally been based on statics alone, acetbeiis

Cableways constitute a class of s
. se s" tmoving load systems. The transverse

cable ha leT vibration of elastic systems under
moving mass loads has long been a sub-

ftflaigject of interest. It has included .

ystudies of beams and bridges [41,
plates, and tightly stretched cables,

-heay cbut we have found no investigations of
the dynamic response of construction *. .

. 1cableways in the published literature.
bTe There are a few reference cowlver,

w whichhach are of indirect int s w -101. 0
As shown in Fig. 1, the cableway con-
sists of the carriage, bucket, main
cable, haul cable and hoist cable. The
horizontal movement of the carriage is

Fg 1 Alao o ac eacontrolled by the endless haul cable. -'.
Fig. -1. App l f a cab' 01dleway The bucket hoist cable is driven inde-

-, sse inhaycntpendently of the haul motion.

21
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Three mathematical models were
developed. Only the simplest one, Y 2 2

* having three degrees of freedom, is +x c+ d)L-X ( t

presented here. The differential equa- m

tions for a much more complete model 1 1
having 3 (n+2) degrees of freedom, -=Xd
where n is the number of lumped masses . -!
in the main cable, may be found in Ref. "
[11]. In addition, simplified single- For bucket:
degree-of-freedom systems were inves- For'b..k..:

tigated to study the effect of wide (lb)
variations in the x,y configuration of Mb':b
the bucket path. This led to a search F -2'
by trial for optimum path configura- xc-Xbr b +ycb
tions. The aim was to reduce the re- NAbEbtLN+ -Xc
sidual amplitude of horizontal oscil- b 2.o
lation of the bucket to acceptably c']-, +(yh-Yd

* small values and to minimum values if
possible. The findings of the path Mb = (lc)

4 studies for the single-degree-of- b-b
freedom system were then used in a _2-
reinvestigation of an example from the Yc-yb x + "
three-degree-of-freedom system. The W b +NAbEb t L[N+..
investigation was carried out in the b
Department of Civil and Environmental V b.-.boc
Engineering at the University of Colo-
rado at Boulder. in which x and t are the haul and

hoist functions, k and W are mass or
MATHEMATICAL MODEL weight lumps; A and E are effective

Main cable values of cross-sectional area and
Basic assumptions: (a) Mancbe modulus of elasticity of cables; ~t is

and hoist cable are elastic and obey
Hooke's Law. (b) Haul cable is inex- length of main cable; b, c and m a~e

subscripts referring to bucket (ortensible. (c) Portions of the cable hoist cable), carriage and main cable;
masses are lumped as follows: haul N is number of parts in hoist cable;
cable and hoist cable at the carriage L is span between towers; d is vertical
and bucket; main cable in a single par- coordinate of top of tail tower. See
tial mass at the carriage. (d) Support Fig. 2. The equations were solved
towers are rigid. (e) Carriage and
bucket are point masses. (f) Kinematic numerically by use of a CDC 6400 com-

motions of carriage and bucket are puter. The algorithm was based on the .

specifiable functions of time (haul meods. and predictor-corrector
and hoist functions, respectively). methods.

(g) Frictional effects are neglected.
(h) Motion is limited to x,y vertical PROTOTYPE

plane. (i) Sag in main cable is small. A few construction cableways have

Thdhad spans in excess of 3000 feet but
freemo nhvibaoryhrespne es o their use has been limited to rela-freedom in vibratory response as fol- tively light loads and low speeds.

. lows: vertical displacement of the Normally the spans ra ge from about
carriage and vertical and horizontal Nral the pans fmot

1000 to 3000 feet [12J. Important di-displacements of the bucket. It may mensions of the investigated prototypebe shown that Eqs. (1) are the differ- (Fig. 2) are as follows: span lengths,

ential equations of motion [Ill]. L = 1000, 2000 and 3000 ft.; coordi-

For carriage: nates of initial rest position ofFor carriage: bucket, xi - 100 ft., Yi = 150 ft.;

SM Yc - W (la) coordinates of final rest position of
c c bucket, xf = 600 ft., yf = 500 ft.;

both ends of main cable are at same

c2+Y2'- level (d-0); static sag of main cable
SA (-YN+ C b is 51 percent of span L [2]; hoist

b bP Lb N2 +  cable is in four parts (N-4) between
carriage and bucket sheaves, a value
found in practice. Further details

N (b )2+ Y2'_, are shown in Table 1.

bb
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span L __

S.,0)
?" ~L d Ld(d-0) f lorilgin of

-/'coordinate'

:a- .I0  ,::LP:- head
t ower carriage tower I

Ab+ b. j...,"" i l \l !L/ bt ' b; +'.Y I I"" '-;
I .part

Iinitial (starting)
, i lposition

-,b, \yet

L-- final (desired) position

Fig. 2. Two-dimensional (x,y) model having three degrees of freedom

TABLE 1
Load and Machinery Data.

Operational sizes and weights (cable diameters, carriage and bucket weights, etc.)
are from "Handbook of Heavy Construction" by Havers and Stubbs [12]. Cable net
cross-sectional areas, effective moduli of elasticity, and weights per unit length b'.

are manufacturers' catalog values.

Notation Item

Am  Net cross-sectional area of 3 3/4 inches diameter main cable 6.7735 in

Ab Net cross-sectional area of 1 inch diameter hoist cable 0.4792 in

SE m  Effective modulus of elasticity of main cable 1.7x107psi

. Eb Effective modulus of elasticity of hoist cable l.9xl0 7psi

Weight of carriage 14,250 lb -.. .
Weight of 500 feet of hoist cable 850 lb '.

Weight of 1000 feet of main cable 24,200 lb
Weight of 1000 feet of haul cable (1 in. in diameter) 1,700 lb

Wc Total lumped weight at the carriage 41,000 lb

. Weight of empty bucket 12,000 lb
Weight of 8 cubic yards of fresh concrete (at approximately 32,000 lb

150 pounds per cubic foot)
Weight of fall block and spreader 3,150 lb
Weight of 500 feet of hoist cable 850 lb -.7 -A

W b  Total lumped weight at the bucket 48,000 lb •
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HAUL-HOIST FUNCTIONS
The simple, symmetrical, cycloidal haul

Three displacement functions with displacement function was used for
finite rise-time T, having constant- "Example-One" motions. The modified
slope front, versed-sine front, and cycloidal displacement functions for
cycloidal front [131 have been con- "Example-Two" and "Example-Three"
sidered. The cycloidal front is the motions were, in general, composed of "
only one of these functions that does an accelerating half-cycle cycloidal
not require a theoretically infinite function, followed by a constant velo-

*. rate of change of acceleration (jerk) city function, which was followed by "
in passing from the initial static a decelerating half-cycle cycloidal
condition to the displacement function function. These motions were unsym-
and in passing from the displacement metrical, the acceleration era being
function to the final static condition, one-half the duration of the decelera- -
It has been assumed, therefore, that tion era. Under some conditions the
the cycloidal function more nearly intermediate constant-velocity era was
approaches actual operating conditions not required. The hoist functions
than the other two. One simple and were the same as the haul functions in
two modified cycloidal functions were form except that the hoist time Tb was
used as haul-hoist functions in the in all cases slightly longer than the
three groups of examples investigated, haul time Tc" Fig. 3 compares the 0

020
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-It s

- I.-*" .

i .'4? 0 '€ " 2T1 " %

i ) (b) Example Two .- -.

% ,1,?"-.'. "

rO 0IT, to 0 5 435 03. 3 ISO
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Fig. 3. Comparison of velocity-time curves for various forms of the haul-hoist
function. (These curves have been labeled for the haul function.) 'Li

* .24

%%.--

"% '.'%'



0%
~~I-..--..

velocity-time haul curves (velocity .
pulses) for the three groups of exam- _
ples for three values of T for each -.

example. Since the haul distance 80
(xf-xi) was kept constant the areas
under the velocity pulses are all 0
equal [111.

DYNAMIC RESPONSE 60

' Example One; Simple Cycloidal Haul
and Hoist . The displacement A

haul function consists of a cycloidal 44
function plus a constant as follows: tc b

xf -x 2Trt 21Tt rmd2ft residual:'j:- xc (t)-sin -- + xi  (2)
c(t) amplitudes

* c0 c 20

where 0 j t g Tc, and xi and xf are the
initial and final horizontal locations.
The displacement hoist function isA: given by: i (. 6]..',.:2 40, - o 60 o -:

"ft-i 2nt 27Tt Tb 25 45 65aeconda 85 %"'.. 41
f )

fi silngh + ti 3b(t) -- Fig. 4. Response spectra for maximum
amplitudes of vibration, with

where 0 r. t f T ,and tj and tf are the simple, symmetric, cycloidal

initial and finklengths of the hoist ("Example One") haul-hoist
cable. functions operating the cable-

way system of 1000 feet span, -
, ~~~with haul-hoist distances as : =
The response spectra for horizon-

tal maximum amplitudes of vibration of specified in a PROTOTYPE. s.
the bucket Axb have been shown in Fig. For b'es amplitudes"
4 for a cableway span of 1000 feet. bare residual amplitudes
The responses have been computed for of vibration.
five values of the haul duration T c conditions are physically impossible.ranging from 20 to 90 seconds. Hoist cniin r hsclyipsil..-, -
dragin from 20 to ecoas. oist There are thus limitations on the low-
durations Tb are in each case five
seconds longer than the haul durations er values of Tc and Tb of the proto-

" " for operational reasons, that is, type system and also the mathematical 'U '
T b = Tc + 5. The maximum amplitudes model. No attempt, therefore, has
of vibration are very large for short been made to calculate response for -

durations of haul. For instance, for very small values of operating time.
c 20 seconds they are: 6b - 170, Within the range of investigation of

c- 38 and Ayc - 1.0 feet Or t < T operating times the maximum amplitudes
" a nd - y 1.0 fee y o t.0b; of vibration decrease greatly as the

anG Axb - 180, Ayb - 40 and Ayc 10feet for t > Tb The bucket amplitudes operating time is increased. If the
or this case of very short operating operating time is large the amplitudes T i

time are obviously much too large for approach zero and the system approaches

acceptable operation and have not been static behavior.
shown in Fig. 4. The responses for
t > Tb are residual amplitudes of vibra- Fig. 4 illustrates how response
tion. Since the vertical amplitudes of spectra may be used for setting lower 0
both bucket and carriage are much limits on haul-hoist times. For ex-:-.::: ~ample, for the particular conditions "..'-
smaller than the horizontal amplitudes a e o h rc on n

l the latter are shown represented (span, haul-hoist dis- '.-
is not surprising that tances, haul-hoist functions), if the N

the horizontal amplitudes for the buc- maximum allowable horizontal residualth oiotlapiue o h u- amplitude of the bucket (Axb for -. /'
ket are much greater than the vertical t ude of th bet for a
amplitudes; the bucket is suspended as the shortest allow-a pendulum, able haul time Tc is about 50 seconds.

In order for the operating times HauExample Two; Modified Cycloidal ..,V,*
Tc and Tb to approach zero it would be and Hoist Functions. In this

necessary for the haul and hoist velo- example the maximum velocities for
infinity. Such hauling the carriage and lowering thebucket have been limited to 37 and 16

25 -
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feet per second, respectively, which two-tenths of the span lengths, respec-
are the maximum values found in the tively, and the static maximum tensile
published literature. Span lengths of forces are 305,000 and 271,000 pounds,
1000, 2000 and 3000 feet were investi- respectively. These last two values
gated. The mathematical descriptions are less than the tensile force when
of the displacement-time, haul-hoist the bucket is at mid-span. It could .

- functions are basically simple, but be argued that the ratio of haul dis-
since there are three eras, the ini- tance to span length should have been

..*,. tial and terminal values as well as kept constant in the investigation. -. .,

displacement-time functions must be It was decided instead to keep the ab- "-
given for each era. The whole becomes solute value of haul distance a con-
cumbersome and will not be included stant. The curves of the maximum ten-
here [111. sile forces in the cables are shown in

Fig. 5. At values of Tc greater than O
In Example-Two motions an upper

. limit has been placed on the haul velo-
city. Consequently high values of ac-
celeration and deceleration may be
necessary under some conditions. In 5 360,
Fig. 3b, haul velocity functions have .1
been shown for Tc = 20, 50 and 80 sec- 0Span 1000 fot
onds. The curve for the 20-second du- . O 33..- .-

ration must include a constant velocity 30- 0

*'", era if the maximum haul velocity is,., 3 .0 feet
limited to 37 feet per second. The 305.operating durations of 50 and 80 sec- 3 00,onds, however, do not require the pre- * ..

sence of constant velocity eras in t 280 a 3000 feet
order to satisfy the haul distance re- I ..
quirement (xf - xi) within the speci- 2,1

fied durations. -c20 " 0 60 8
b - 45 65 85.

For the conditions calculated the seconds
residual amplitudes (t > Tb) were gen- (a) Main cable
erally smaller than the amplitudes - -
during the haul-hoist operation 0
(t < 'Tb) . It is reasonable to assume 13 -0

that this desirable result may occur 3,.
when the haul-hoist functions involve
decelerations which are numerically spln 10O0 feet .

smaller than the accelerations, but it e---..
cannot be assumed that the result will 2 2000 feet -.

hold in all cases. No very significant .- "
difference was found in the behavior of
the system as the span length was 1"
changed. Results similar to Fig. 4, # 12 --..

consistent with change in span length, i ,
were obtained [i]. - -, 60 '8

Cable strength is important. The T
bs cond 6 85 ,.-

maximum tensile forces (dynamic plus (b) Hoist cable
static) of the main cable and the hoist
cable have therefore been calculated. Fig. 5. Maximum tensile forces (dyna-

The maximum static tensile force occurs mic plus static) in cables;
when the bucket is located at the mid- "Example-Two" haul-hoist func-
die of the span (assuming the bucket is tions; three different span

hauled to mid-span or beyond), In the lengths; haul-hoist distances
investigation of the model the bucket as specified in PROTOTYPE. .,

'.' is hauled in each case for the same " ' '
i u i c s r sabout 50 seconds, the maximum tensile . .
distance (600 feet) from the head forces in the main cable approach their.-..'
tower. In the cableway which spans
1000 feet, the bucket is thus hauled asymptotes which are the maximum static S
past the middle point of the span, and tensile forces. The curves of the
the static maximum tensile force is maximum tensile forces in the hoist

330,000 pounds. In the cableways hay- cable for three different span cable- .,

ing spans of 2000 and 3000 feet, how- ways almost coincide with each other
ever, the bucket is hauled for dis- for Tb greater than about 60 seconds;
'" tances equal to only three-tenths and their static asymptotes are independent "."V..

e"" of span length. _'_- +
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Example Three; Modified Cycloidal
Haul and Hoist Functions. In this
example, the durations for the accele--.

*'.. ration and deceleration eras are fixed -' . "
and they are not dependent on the total _
duration of the operating era. There
always exist three eras in each operat-
ing procedure but the magnitude of the -- "
velocity in the constant velocity era
is varied as the operating time is -/-
varied. In Fig. 3c three velocity haul Fig. 6. Spectrum of residual amplitude
functions are shown. All of the ac- resulting from the cycloidal
celeration eras last 3.5 seconds and function applied to an un-
the deceleration eras last 7 seconds, damped, single-degree-of-
Each of the functions includes a con- freedom, linear oscillator
stant velocity era during which the [131.'
velocity is a maximum. Since the dura-
tions of the acceleration and decelera-
tion eras were very short, the maximum
amplitudes of vibration were found to
be very large especially for the hori-
zontal oscillation of the bucket. The "
dynamic behavior of the syste was con-
cluded to be unacceptable [111. The
reason is presumably in the large ac-
celerations involved in the haul-hoist ".-
functions, carriage --- , W %

SEARCHING FOR OPTIMUM PATHS

- For safety and operational reasons L
it is necessary to limit the residual -
amplitudes of vibration. The calcula-
lions show that the horizontal residual

amplitudes of the bucket may be of the
order of ten or twenty times the verti- Fig. 7. A single-degree-of-freedom
cal residual amplitudes for equal oper- linear system with constant

ating durations of the same example, pendulum length and rigid
Two methods were developed in the in- horizontal path for the car-
vestigation for the purpose of reducing riage; limited to small angu-
the horizontal residual amplitudes. lar displacements; x is a
They are based on the assumption that specified function o? time.
an approximately straight path from
pick-up point to deposit point, as used
in the calculations in the first parts
of the investigation is not necessarily approztel horimsuuta

the best path. The idea underlying Pau taaa InI
aaoial verxiod get"o .the natural period method is based on plek-up

the characteristics of the response ,....

spectrum for residual amplitude for an
undamped, single-degree-of-freedom, I .:- P"'s*
linear oscillator acted upon by an ex-
citation function which is a simple0
cycloidal function of time. The im- /
portant feature is the existence of /
zeros in the theoretical response spec-.
trum for the simple linear oscillator .. e
as shown in Fig. 6 [13]. In this pro- / V
posed method it is assumed that the
bucket suspension length, Fig. 7, can dePoit
be maintained constant until the buc- loecatic.

O* ket is over the desired point of de-
posit and that the bucket can then be Fig. 8. The family of paths used in
lowered vertically to the deposit searching for minimum residual
point. The resulting idealized path horizontal amplitude of vibra-
thus consists of two straight lines, tion of bucket.

"°" one horizontal, the other vertical; e o l d n i o f
P" ""Fig. 8. The bilinear path method employs a limited generalization of the '..'Fi. .Th-ilnarpthmthdpaths represented by the natural period
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method, as one extreme, and the method The natural period method has been
employed in the earlier part of this applied to the three-degree-of-freedom ..

*" investigation which resulted in a cableway model, having a span of 2000-.
single, approximately straight line feet, described previously. The in- -

path. tial pendulum length t, which is kept
constant for the haul era (0 r t g ) ,

The family of paths resulting from is 95 feet and T is 11 seconds. The -. r,%. -
the three methods is shown in Fig. 8. dynamic response has been analyzed for
Paths of still more general shape, Ti = 2T = 22 seconds and T2 18 sec-
either multilinear or curvilinear, can onds where 2 is the lowering time
be imagined, but it seems unlikely that (hoist era). The total operating dura-
they would lead to a relatively simple tion T ff (T + T 2 ) = 40 seconds. Thepeatngd

determination of paths which approach residual amplitudes of vibration are
an optimum shape. For practical rea- as follows: Axb - 2.8, A b - 0.5 and
sons related to the physical topography Ayc = 0.5 feet. These displacements

• of canyon construction sites it is gen- are very small compared to the results

erally not feasible to use paths which shown in the previous sections for the -.

drop below a straight line connecting path consisting of one approximately
the pick-up and deposit locations, straight line. The maximum tensile ".."-
Therefore, the investigation of paths force in the main cable is 336,000 and
has been limited to the upper triangu- in the hoist cable is 14,000 pounds.
lar region shown. These values are far smaller than the "

corresponding breaking strengths of
Natural Period Method. The "cable- the main and hoist cables.

way" is reduced to a single-degree-of-,.." .
freedom pendulum system which includes The obvious disadvantage of the

* a carriage traveling on a horizontal natural period method, however, is . .
rigid path and a bucket suspended by a that the path of the bucket is sub- .6

massless, inextensible, constant length stantially longer (Fig. 8) and there-
cable; Fig. 7. The haul function x fore the travel velocities must be
which controls the displacement of he higher, for the same total operating .
carriage is a cycloidal function of times, than in the other two methods.
time with the duration of haul era Tl The more general, bilinear path method, '.-( ,.

, It is assumed that the amplitudes of which provides for simultaneous motion
oscillation are small. The spectrum in the horizontal and vertical direc-
of the residual amplitude of the buc- tions and as a result lower average .
ket resulting from the cycloidal func- velocities of travel, is developed in
tion is shown in Fig. 6. The natural the next section.
period of the pendulum can be found
from the known relation: Bilinear Path Method. As in the

natural period method, the cableway

T - 2rg (4) system has been simplified to a single- 771
Fit degree-of-freedom pendulum suspended

iwih.iteeg ofhcbefrom a carriage which moves along a~~~~in which t is the length of the cable. ,..-,._rigid, straight, horizontal path. The

The residual amplitude of vibration is
theoretically zero 113] if the duration pendulum length, however, is varied J7
of the haul era T, is an integer multi- during the haul-out era. The cable is.
ple (excepting n is int s, assumed as before to be massless and "
poe (excepting nx 0 1)f T, thatiselastically inextensible. Fig. 9.
for t 'a "1,' xb 0, if

The kinematic path of the bucket --..-.1 = nT, where n - 2, 3, 4, 5 ... (5) is specified as a bilinear path, but -.--. ' -:
tthe bucket may oscillate relative to

it is assumed that this characteristic that path. The kinematic displacement
may be applied approximately to the of the bucket along the path from the
operation of the actual cableway system starting position to the desired final
in order to approach the minimum hori- position is a cycloidal function of -
zontal residual amplitude of vibration time, which is
of the bucket. Actually, for the pro-

" totype cableway system, the path on P t 2rrt 2rt %
which the carriage travels is not Pt- - sin (6)
rigid, straight and horizontal as has- sin (6)
been assumed here. The maximum slope
of the path is small, however, so that in which Pt is the displacement of the
the influence of the static shape of bucket along the path at time t, Pt is
the path on the horizontal oscillation the total length of the path, and T is

of the bucket can be assumed to be the operating duration. The location

small, of the knee point (x , y ; Fig. 9) is
the key to this methd. kThe lengths
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a (X'*0) carriage

I cable

s fetarting position of
the bucket (Xfy. )

bcket ('b-yb) ..

,desire bli near path , ''"

sired final position of
the bucket (xfoyf)

Fig. 9. A single-degree-of-freedom pendulum system with varying length of pendulum. a

of the path segments are given by the bilinear path (see, for example, the . *

expressions: dashed bilinear path with knee at co- -
ordinates xk - 400 and Yk - 200 feet). -

) 2 ' The numerals written to the left of -
Pl - xi) (yk-yi the knee points give the corresponding

horizontal residual amplitudes Axb-
(Yf-Y)2 ,  Only about one-third of the approxi-

P2  1 xf-xk? + (7) mately 150 knee points for which re-
sponse calculations were made have

been shown. Iso-residual-amplitude
where P1 + P2 - P. lines (lines of equal residual ampli-

For small vibrations the differential tude) have been drawn resulting in
what might be called an iso-residual-

equation of motion of the pendulum is: amplitude map. The single-straight-
line path I-F is a special case of the

xb - c bilinear path and this straight line
xb - (-yb) tb(8) is an iso-residual-amplitude line for

which the residual amplitude txb = 36
in which xb is the horizontal vibra- feet.
tory displacement of the bucket, xc
is the horizontal displacement of the Fig. 10 shows that the bilinear
carriage (haul function), Yb is the path for which the knee point is
vertical coordinate of the kinematic located at about xk - 380 and Yk -
path of the bucket and t is the vari- 250 feet results in a minimum residual
able length of the pendulum (hoist amplitude for the operating duration
function). If the carriage path is T - 40 seconds. Iso-residual-ampli-
horizontal, tb - Yb. The input time- tude maps were also calculated for
functions x-, Yb and tb depend on the T - 30, 35, 50, 70, and 80 seconds. -
specified geometry of the system (Fig. The knee points resulting in minimum .

9 and Eqs. 7) and thq b cket-path time residual amplitudes for the various
function Pt (Eq. 6) LllJ. values of T were then plotted in the

xy plane. A curve drawn through these
The dynamic responses of the buc- points s he locus of desired knee

ket for many different bilinear paths points lli.
having different locations of the knee
point but all for the operating dura- The path of the carriage in the
tion T - 40 seconds have been calcu- prototype system, however, is not a
lated. In Fig. 10 each plotted point horizontal straight line. Since the
represents the knee point for a sag in the main cable is small an
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too 50 4o0 3oo 200 feet 0oo 00

.. 100

I ~ starting

. I oo

Q4 position
,4 ~M.- . 4o - . o o0

'.-*• 5. is. sfeet

te. / 1is ; :approximate location of knee

loG.] Xk 380 ft..Yk 250 ft.

7. 2
F -final desired position..

Fig. 10. Iso-residual-amplitude map for location of the knee point of the bilinear
path for operating duration T 40 seconds. Small numbers on contour map ~
are bucket horizontal residual amplitudes in feet.

inclined straight path may be a reason- purpose of this method. It is inter-
able approximation to the curvilinear esting to note that the vertical

*path of the carriage of an actual maxima in this particular example are
* system. An iso-residual-amplitude map greater than the horizontal maximum. S.

was calculated for the operating dura- All three values are reasonably small,
tion T - 40 seconds for a moving pen- however. The maximum tensile forces ~ -

dulum system for which the rigid path in the main and hoist cables are
of the carriage is an inclined straight 375,000 and 36,800 pounds respectively.
line. The bilinear path knee point re- Both values are far smaller than the *,

-,suiting in minimum residual amplitude breaking strength. While this proce-
was found at about xk - 400 and Yk =dure for securing great reduction in
300 feet. These values may be compared bucket horizontal residual amplitude
with the previously obtainod 380 and was tested for only one value Of T it

250 feet. The iso-residual-amplitude seems to show significant promise..-'-
map was strongly similar to Fig. 10

* [ill. CONCLUS IONS

The next step was to apply the The two principal criteria perti-
results of the optimization of path neat to the dynamics of construction
obtained for the single-dge-f cableway operation appear to be time
freedom model to the three-degree-of- consumed in operation, and safety. if
freedom model. The three-degree-of- the system is operated very slowly its

*freedom model having 2000 foot span response may be determined by statics
has been analyzed for one value of the alone but as the speed of operation is - -

operating time T -40 seconds, using a increased (operating time decreased)
bilinear path with knee point at xk -the dynamic effects become increasing-
400 and Yk - 300 feet. The calculated ly important as would be expected.
residual amplitudes were: A b - 2.2 The dynamic effects include mechanical
feet, Ayb - 4.0 feet ' 4 0 feet. oscillation of parts of the system,
The F g I.Is-reiduon-in itde mespecially the possibility of large

',c h - -
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pendular displacements of the suspended resulting variations in response do
bucket, and the resulting addition of not change the conclusions already
dynamic increments to the stresses in stated. In considering the effects of
the cables and other components. Buc- change in span length it should be
ket oscillation is not only potentially remembered, however, that the haul-
dangerous to personnel but, if it hoist distances were kept constant
occurs in the vicinity of the desired even though the span length was changed.
location of unloading, may result in
lost time in waiting for the oscilla- Three functional variations in the
tion to subside in order that the load haul-hoist time functions were investi-
can be accurately placed. gated (Fig. 3). The steep-fronted,

plateau-like velocity functions .' *.

The mathematical model presented (Example Three) gave much less favor-
here involves many simplifications of able response results than the other . .
the prototype. Specific quantitative two variations (Examples One and Two).
conclusions are presented but their The high accelerations required in
application to cableway operation in both the acceleration and deceleration
general must be limited to trends and eras of Example Three functions are

* to illustrating what sorts of response the apparent cause of the unacceptably
- calculations can be made. large amplitudes of vibration. Exam-

Wtnhli ofhieiples-One-and-Two functions gave approx-
Within the limits of the investi- imately equal results and both appear

- gation restricted to haul and hoist to be acceptable.
(lowering) distances of 500 and 350
feet, respectively, the system shows The search by trial for optimum
insignificant dynamic response if the configurations of the kinematic path
operating time is greater than about of the bucket (Figs. 6-10) resulted in
80 seconds. If the operating time is surprisingly large reductions in the
less than about 50 or 60 seconds, how- horizontal residual amplitudes of vi-
ever, the amplitudes of vibration in- bration of the bucket. The informa-
crease greatly and, depending on the tion from the single-degree-of-freedom
limits imposed, the operation may be trial study, when applied to the three-
unacceptable (Fig. 4). The vertical degree-of-freedom model resulted in a
amplitudes of vibration of the car- reduction of bucket horizontal resid-
riage are generally smaller than those ual amplitude by a factor of about ten.
for the bucket and both are generally This result was achieved for a case
much smaller (by a factor of 10, 20 or having the short operating time of 40
more) than the horizontal amplitudes seconds.
of the bucket. In most cases the re-
sidual amplitudes of vibration are Extensions of the investigation.
significantly smaller than the ampli- The numerical results have been con- --.. ,
tudes occurring dur~ig the haul-hoist cerned only with the operation of haul- -
operation. ing out and lowering the loaded bucket . .,

to the dumping position. The analysis
The change in dynamic increments for lifting and hauling back the empty

of cable force follows the same gener- bucket can readily be carried out.
* al pattern as change in vibration am- Further study of optimum path of the

plitude. Cable strength (according bucket is needed. Cableway models
to the dimensions quoted in the avail- having 2(n+2) or 3(n+2) degrees of
able literature), however, appears to freedom can be investigated by using
be a less critical consideration than the equations for the more complete
bucket vibration amplitude. The ratio mathematical model presented in Ref.-
of breaking strength to maximum ten- [11]. Wind effects can be included by
sile force (static plus dynamic) was using the model having 3(n+2) degrees
found to be not less than 3.5 for the of freedom. The effect of damping
main cable and 2.5 for the hoist cable could be included without difficulty
(Fig. 5). by the addition of appropriate terms

in the differential equations. Damp-
Pendulum response of the bucket ing, however, is perhaps not of major

(horizontal vibration amplitude), importance in this transient problem.,%
rather than vertical vibration of the
bucket or carriage, or dynamic cable In the operation of prototype
force, seems to control the safety systems a skilled, experienced human
limits to be placed on operating (haul- operator undoubtedly can control to
hoist) times. some extent, through a process of human

feedback, the dynamic increments of
Three span lengths (1000, 2000 response and thus keep the oscilla- t.

and 3000 feet) were investigated. The tions of the system, particularly the L
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pendulous oscillations of the bucket, 5. G. M. Savin, "Basic Dynamic Equa-
within reasonable limits. There is no tions of a Mine Lifting Cable",
obvious way, however, of introducing Applied Mechanics (in Russian),
spontaneous human control into the Vol. 1, No. 1, pp. 5-22, 1955.
mathematical model except perhaps
through the use of interactive computer 6. V. E. Shamanskii, and V. N.
graphics. Shevelo, "On Longitudinal Vibra-

tions of an Elastic String .. ,
Another consideration which has (Cable) of Variable Length",

not been included is that concerned Izv. Akad. Nauk. SSSR, Otd.,
with the response of the electric drive Tekh. Nauk. No. 3, pp. 65-71,
system. It has been assumed that cer- May/June 1959.
tain mechanical excitation functions
could be specified and achieved in 7. A. V. Krishna Murty, "A Lumped
practical operation. This assumption Inertia Force Method for Vibra-

is not entirely realistic, one reason tion Problems", Aeronautical
-*" being the existence of inertia in the Quarterly, Vol. 17, Part 2,
- drive systm. pp. 127-140, May 1966.

Finally, it seems likely that 8. R. F. Dominguez, and C. E. Smith,
differential equations of the type of "Dynamic Analysis of Cable
those presented, with some changes and Systems", Journal of the Struc-
the addition of several more degrees tural Division, Proceedins of
of freedom, can be modified to apply the American Society of vil
to other classes of cableway transpor- Engineers, Vol. 98, No. STY, <'

% tation systems. In the case of a gon- pp. 1817-1834, August 1972.
dola system, for example, the hoist
cable would be removed from the analy- 9. Horace Lamb, "Higher Mechanics", e...

sis and the bucket (assumed point mass) 2nd Ed, The University Press,
would be replaced by the gondola Cambridge, England, 1929. -. -

(assumed rigid body) attached by a
". pivot at the carriage. 10. S. Timoshenko, and D. H. Young, .o

"Advanced Dynamics", McGraw-
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Corps* o n.

EMPIRICAL INVESTIGATION OF WATER-SHOCK WOADING .

~Charles R. Welch and Landon K. Davis

U. S. Army Engineer Waterways Experinent Station
:. Corps of Engineers --

Vicksburg, Mississippi

Measurements have been made of strain induced in a simulated concrete half-space
by small spherical explosive charges detonated in an overlying body of water. These
measurements were used to infer peak normal stress in the concrete directly below the
charge. The results indicated that peak normal stress near the vertical axis could be
predicted using geometric techniques. These techniques consider the peak normal stress -

at the shock front to be a function of the increasing surface area of the wave. -.

INTRODUCTION 2) with vertical and slant strain gage arrays, with the slant
pge arrays making an angle of approximately 20 degrees

The U. S. Army Engineer Waterways Experiment with respect to the vertical. The gages used at each location
Station has recently conducted a series of investigations into _...__,_.__ _'"_"__ _

.N the effects of water-shock loading from spherical charges -

on a concrete half-space. The investigations confirm that
peak radial stress in the concrete opposite the charge can ,...
be accounted for by using a model based on geometric
techniques. These techniques have been used with some
success in the past to predict peak particle parameters at
a free surface [1 and at various depths in a layered ( '

geologic media [2, 31.

- Although the research stems from a military J,.

requirement to predict damage to concrete dams, bridge ?

piers, and other massive concrete hydraulic structures I.-

attacked by conventional bombs and smail nuclear weapons,
the results will also have numerous civil applications. These %
include such problems as demolition and removal of
obsolete underwater structures that are near newly built "
replacement facilities, underwater blasting for construction

% adjacent to existing dams or powerhouses, the removal of
debris lodged against bridge piers, etc. o
DESCRIPTION OF TESTS

A concrete half-spae was simulated by a large

rectangular slab of unreinforced concrete of approximate
dimensions 32.8 by 16.4 by 6.56 ft. The concrete used "
in the slab had a density of 136 lb/ft3 , a dilatational wave __.___r_

velocity of 10,650 ft/sec, and a meaured dynamic modulus " " '
of elasticity of approximately 3.93 X 106 psi. The slab O VERTICAL AND SLANT GAGE ARRAYS -" -'.

formed the bottom of a shallow (about 7 ft) basin so that 0-''

..-" various water levels could be maintained over the slab. The NOTE: NOT DRAWN TO SCALE.
dab was instrumented at nine locations (see Figures 1 and Figr I - Top view of test dab
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interface. Output of the gages was recorded on an FM
magnetic tape recording system with a linear frequency
response of approximately 20 kHz.

Charge A typical shot geometry is shown in Figure 2. Eleven 0
I shots have been fired to date over various gage locations
L - Standoff Distance in the slab. In each case the charge was located directly " "

above the associated vertical gage array (see Table 1). All

WATER c charges were spherical in shape. These included two 2-lb
TNT charges, three 1/2-lb TNT charges, and six charges %
consisting of 0.188 Ib of C-4 type explosive (each%

t,[ !v equivalent to 1/4 lb of TNT in producing water shock). .

The C-4 charges were hand molded into shape. The distance -

Ve rtica1from the charge to the slab varied over a range of •
CONCRETE GVertic ages approximately 6 ft for the eleven tests, ranging from ,,-

* charges located surface-tangent to the slab to charges
located at the water surface. Standard engineering No. 10 *,-"....

blasting caps were used to detonate the charges. The water
level above the slab was approximately 6 ft for all eleven -O
shots. The various parameters for each shot are shown in

- Gages I Table I.

Figure 2 - Typical shot geomety showing gage location THEO GEOMETRIC TOPECHNIQUE AS APPED

were 350-ohm, 1/8-in.-long, foil strain gages with gage
factors of 3.18. The gages were located at approximately Cooper and Seamon [11 suggest that the peak particle P', ."

I-ft intervals from a level of about 0.64 ft below the velocity normal to a dilatational wave front, and hence the-'
water-concrete interface to about 5.82 ft below the peak stress normal to the wave front, assuming the two

Table I

Test Descriptions and Derived Transmission Coefficients

Site Special TNT Equiva- Standoff Distance
Location Characteristics Type of lent Charge from Charge . . -.

Shot (Refer to of Charge Charge Weight Center of Gravity Coefficient Exponent
% No. Figure 1) Location Used lb to Slab A "

. -,.~- I .

S J None C-4 1/2 3 9,365 1.595

2 J None C-4 1/2 3 8,112 1.465 _* -.

3 B None C-4 1/4 3 7,301 1.810

4 B None C-4 1/4 2 10,210 1.601 %

5 B None C-4 1/4 1 15,870 1.224

* 6 B Surface-tangent C-4 1/4 0.083 680,800 1.447
to slab

7 A None C-4 1/4 0.56 47,430 1.421

8 A Surface-tangent C-4 1/4 0.083 1,364,000 1.575
to sdab ?.

9 H Surface of TNT 2.00 6.00 4,065 1.654
water ,% %

10 H Surface of C-4 1/2 5.9 2,650 2.045 %
water

11 H None TNT 2.00 1.00 37,150 1.307 " -
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A2 + ) (2) and an I is the Peak strews normsal to the wave front nearY) the vertical Axis just inside the concrete boundary at thewhere L is the distance from the wave source to the itrae h au f0 nb eemndfo
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2p c of the vertical and the slant gages that did not fall within
T c + the data scatter of the vertical gages taken by themselves.

P2C2 1l1lAll the strain records showed an initial compressive phase, "
where p1  and c, are the density and wave velocity often followed by a tensile phase. The tensile phase was
in the water, respectively, and p2 and c2 are the density observed primarily on gages near the top and bottom
and wave velocity in the concrete, respectively. Using the surfaces of the slab. The rise time of the initial compressive
values p, = 62.3 lb/ft3 , and cI = 5,000 ft/sec for pulse was approximately 30 Asec. The compressive pulse . -

water, and p 2 = 136 lb/ft3 , c 2 
= 10,650 ft/sec for the widths were in the range of 60 psec to 1.25 msec. For - .. °.

C concrete used in the slab, the value of T becomes a given shot, the pulse width tended to increase with
distance into the slab, with the major portion of the

T = 1.65 (5) increase occurring in the f'st I to 2 ft from the surface.

As expected, the pulse width was also observed to increase
The incident peak pressure at the water-concrete with charge weight, but showed no apparent dependence

interface produced by a submerged spherical explosive on charge standoff distance (i.e., distance from the charge
charge whose center is at a distance L from the interface center-of-mass to the slab).
can be determined from the empirical equation [4].

Peak normal stress (i.e., stress perpendicular to the

P = 21,600 (6) dilatational wave front) was derived from peak normal
P=1,6 3  16J strain by assuming linear elastic theory to be applicable to "

the concrete, and by assuming the peak normal stress in
where W is the TNT equivalent weight of the charge. the concrete to result from the water shock loading the
Combining Equations 3-6, we have concrete surface at a point directly below the charge. For

113' Lpeak stress in the shock front at points along the vertical
/L\ L axis, this relationship becomes [5)n2 3 5 . 640 17i1 lL + c2 a - 1 n8

cl Y) n Ul- 200 + P)
or more simply, where P is the Poisson ratio for the concrete and E

" (W -I.13( is the dynamic modulus of the concrete. On the vertical
.n2 = 35,640 ( > 1 (7) axis, o and en have no lateral components, and therefore

Equation 8 provides a direct relationship between the peak
vertical strain and the peak normal stress. Taking v = 0.25

where and E = 3.93 X 106 psi. we have
= an = 4.716 X 106 e (psi) (9)

Equation 9 was used to convert the peak strain recorded 7 ]
by the vertical gages to peak normal stress.

RESULTS OF TESTS
As previously stated, the strain records of the slant * -.

Following the tests the basin was emptied to determine gages were indistinguishable from those of the vertical gages.
the extent of damage to the slab caused by the detonations. Accordingly, other than correcting the slant gage data to
There appeared to be no cratering despite the fact that some reflect the degree of tilt of the gage with respect to a normal
of the 1/4-lb charges were in direct contact with the to the wave front, the data were treated the same as the
concrete surface. There was, however, an apparent random vertical data. The relationship for this correction factor is
scattering of pot holes on the slab surface attributed to given as
the presence of air bubbles in the upper layer of the e
concrete. Two massive cracks were observed which ran the en (cos 0)2 "
length and width of the slab, dividing it into four
approximately equal parts. Since the growth of these cracks where em is the actual peak measured strain recorded
began before the advent of the test series and has continued by the slant gage and en is the associated peak strain
after their termination, it appears certain that they were normal to the shock front. In general these corrections ", "-
caused by the settling of the unminforced concrete slab amounted to no more tham three or four percent of ee-,,,
under its own weight. No other damage to the slab was although in one case it was as h as 38 percent. N..

observed. Equation 9 was then used to calculate peak normal stress.

Typical strain records produced by the tests are shown Figures 7-17 are graphs of a. plotted as a function .-...
in Figures 5 and 6. The sample records shown were taken of vertical distance below the concrete surface for each '. ,

from tests involving the same gage site to eliminate the shot. Using Equation 7 as a guide, a least squares fit of
influence of differences in gage sites on the strain records. the form %
There seemed to be no difference between the strain records n = A(a)P (10)
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was applied to the data from each shot. The values of A fitted the stress data points for all intermediate shots fairly 5
and 03 derived for each data set are listed in Table I. well (see Figures 7-11, 13, and 17).

The values of 0 ranged from 1.224 to 2.045, with The values of A derived from shots located at the
an average value of 1.559 and a standard deviation of 0.219. water surface (Shots 9 and 10) fell below the theoretical
Excluding the upper and lower extreme values the average curve. This is to be expected since the energy coupled into
value of ( becomes 1.541, with a standard deviation of the water from a charge placed at the water surface is less
0.140. The value of (3 was then rounded off to 1.5. than that from a fully submerged charge. It was found that J '

Cm rg qao1whEao7wse a the stress data for both Shots 9 and 10 (Figures 15 and
, Comparing Equation 10 with Equation 7, we see &at 16) were reasonably well fitted by an equation of the form

the coefficient A should be given by
a a = (0.57)A() 1-5 .

* ( .13 (13)FT~)A = PT = 35,640 L (II) .'(13)

The values of A produced by charges located
Accordingly, values of A as a function of the scaled surface-tangent to the concrete (Shots 6 and 8) fell above
standoff distance, L/Wl /3 , are shown in Figure 18 along the line given by Equation 11. This was also to be expected %
with the theoretical curve for A given by Equation 11. due to the increased amount of shock energy coupled
There appears to be good agreement between the data directly into the concrete from a charge in contact with z

points and Equation 11 for all shots in which the charge the concrete surface. It was found that a curve of the form
was at intermediate depths in the water (i.e., not
surface-tangent to the concrete and not at the water a n 

= 
2.49A(0)

"
S

surface), It was found that the equation (14) .. .
= 2.49PT(t)1. 5  

..... ,

n = VT(o
I -  (12) provided a good fit through the stress data points of these

shots (Figures 12 and 14). .• ."
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0.- A values produced by shots surface tangent to concrete ,

0 - A values produced by shots at intermediate standoff distances

17 - A values produced by shots at water surface
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Figure 18 - Coefficient A versus standoff distance

CONCLUSIONS a Term that describes the increasing surface u-ea

of the stress wave in the concrete
Geometric techniques for predicting peak normal stress L + y.

were found to be applicable to the problem of stress \.C../

generation in concrete from underwater explosions. A good REFERENCES

first order approximation of the peak normal stress, o.
near the vertical axis was found to be given by 1. Cooper, H. F. and Seamon, J. B., "A Geologic

Technique for Studying Surface Motions from

n = )TUnderground Nuclear Explosions in Real Geologic

where Media," AFWL-TR-66-123, Jan. 1%7, Air Force
= Empirically determined factor that reflects the Weapons Labotatory.

coupling efficiencies of the charge location as is
given by 2. Cooper, H. F. and O'Kobrick, J. J. "A Geometric

Method of Studying Wave Propagation Through Real " • _

= 0.57 for charges at the water surface Geologic Layered Media," AFWL-TR-66-125,
Apr. 1%6, Air Force Weapons Laboratory.

y = 2.49 for charges surface-tangent to the .

concrete 3. Cooper, H. F., "Empirical Studies of Ground Shock
and Strong Motions in Rock," RDA-TR-3601-002, .-

,y = 1.00 for charges at intermediate distances Oct. 1973, R&D Associates. 2 "-

P = Peak incident water pressure at the water 4. Snay, H. G., "Model Tests and Scaling (U)," NOLTR - '

concrete interfae = 21,600 L \-1.13 63-257, DASA 1240-1(3), Dec. 1964. U. S. Naval
crWl3) Ordnance Laboratory, White Oak, Maryland.

T = Stress transmission coefficient for the interface 5. Britt, J. R.. Personal Correspondence, U. S. Army

= 1.65 Engineer Waterways Experiment Station (unpublished). , ,.
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THE EFFECT OF EARTH COVER ON THE DYNAMIC RESPONSE 0

OF HARDENED REINFORCED CONCRETE STRUCTURES .'.

R. D. Crowson and S. A. Kiger
U. S. Army Engineer Waterways Experiment Station S

Vicksburg, Mississippi

Forced vibration tests were conducted on three hardened reinforced
* concrete structures, two rectangular box structures, and a closed-end

arch, both with and without backfill in order to determine the effect of
backfill on dynamic characteristics, i.e., natural frequencies, mode
shapes, and damping. The backfill increased equivalent viscous damping
ratios in each case, ranging from a slight increase for one box struc-
ture to a substantial increase for the arch. The effect of backfill on
natural frequencies was different for each structure. Finite element
calculations were also performed, and it was found that two-dimensional
analyses were inadequate for predicting natural frequencies, whereas,
results of three-dimensional analyses compared favorably with experi-
mental data for the uncovered structures.

INTRODUCTION MODEL STRUCTURES ..-.

Information about the response of buried The two types of structures investigated .

structures subjected to dynamic loads is impor- were typical of many hardened buried structures.
" tant when assessing the vulnerability of mili- in use today. Structures 3B and 3D were model
. tary targets as well as in the design of both reinforced-concrete box structures, having a

civil and military structures. For buried roof, floor, and wall span-to-depth ratio of 10
structures, the effect of earth cover on dynamic and 4, respectively. Both box structures were
parameters, i.e., natual frequencies, mode 16 feet long by 4 feet wide by 4 feet high
shapes, and damping ratios, is not clearly (inside dimensions); the wall thickness of
understood. This paper compares data obtained Structure 3B was 5.8 inches and that of Struc-
experimentally from vibration tests, in which ture 3D was 13 inches. Structure 3A was a
the effect of soil cover on dynamic parameters model reinforced concrete arch, 14 feet in
was measured, with analytical procedures cur- diameter and 24-1/2 feet long with a 12-inch-
rently being used. thick arch ring, 13-inch-thick floor, and 16-

inch-thick end walls. For all three structures,

Normally, the first step in the dynamic principal reinforcing steel was I percent for
analysis of a structure is the determination of both tension and compression. The models were :,,-
the structure's fundamental frequency. To fully buried with 2 feet of backfill cov.r at
determine the natural frequency of a buried the arch crown and roofline of the boxes. The
structure, one procedure (Reference 1) modifies backfill material around the sides of the box
the frequency obtained for the uncovered struc- structures was dense sand, having a unit
ture by the addition of a term to account for weight of approximately 100 lb/cu ft. The
the mass of soil overburden. Soil stiffness backfill for the arch, and for the top 2 feet
and damping In such a technique are not con- over the boxes, was compacted soil having a
sidered. Reference 2 suggests that the effect unit weight of approximately 117 lb/cu ft... .
of soil mass be neglected since in some Structural details are shown in Figures I and 2
instances the surrounding soil also acts to for the box and arch structures, respectively.
stiffen the structure. Finite element calcu-
lations usually consider soil stiffness, as EXPERIMENTAL PROCEDURE

-* well as mass, in the analysis of a soil-
structure system. A damping term could also be The box structures were instrumented
included in the finite element model, however, (Figure 3) with vertical accelerometers along
the energy loss caused by stress waves radiating the roof and horizontal accelerometers on the ..

into the soil, i.e., radiation or geometric side walls at midsection. Sinusoidal input -

damping, require special boundary elements not forces were from two electrohydraulic vibrators
available in most general purpose structural located in the roof at one-third points, running
analysis programs. inphase and then running 180 deg out of phase.

,". 4S . .p ,
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4-Tests were also run using a single vibrator at asynmmetric mode, obtained in the out-of-phase
the center point of the roof. Frequency sweep tests, was at 175 Hz. However, the resonant

* tests from 50 to 1000 Hz were run at force peaks are poorly defined for the buried struc-4
*levels of 50, 100, and 500 lb peak output per ture tests, as evident in the mechanical
*vibrator. The frequency sweep rate used, impedance curves. Such curves are indicative

0.3 decades per minute, was selected after of high damping ratios.
several rates were tried and was considered to
produce a quasi-steady-state condition, i.e., Data for the arch structure are presented . e

results at this rate were no different from in Figure 6. Again, the uncovered resonant
-those of a slower rate. The series of tests peaks are sharply defined, and the first two

conducted on the uncovered box structures were frequencies corresponding to symmnetric modes
* ,repeated after the backfill was placed. occurred at 104 and 220 Hz. Asynmmetric modes

occurred at frequencies of approximately 70 and
The uncovered arch structure was instru- 220 Hz.

mented (Figure 3) with accelerometers around
*the interior circumference at midsection meas- Plots similar to those of Figures 4-6 were
*uring radial motion and along the crown meas- generated for each measurement point on each

uring vertical motion. Frequency sweeps from structure. Since the component vector curves
*50 to 1000 Hz were run using two vibrators are both amplitude- and phase-sensitive, mode

placed at 36 deg and 144 deg from the base. shapes were obtained by plotting the amplitude .' ~.
* The vibrators were run both inphase and 180 deg of the 90-deg component vector at the resonant '

out of phase at constant force levels of 50, frequencies for each structure. These shapes
100, and 500 lb peak output per vibrator. A for the uncovered structures are shown in

*single vibrator located at the crown at mid- Figures 7, 8, and 9 for Structures 3D, 3B, and
section was also used. Preliminary test results 3A, respectively.
down to 10 Hz indicated no structural response

-~~ below 50 Hz. From the response curves of Figures 4-6, --

-~ it can be seen that the effect of the earth
EXPERIMENTAL RESULTS cover was not the same for each structure.

Resonant peaks for Structure 3D after burial
Vibration test data can be analyzed and (Figure 4) occur at the same frequencies as ,

presented a number of different ways. For this those of the uncovered structure (considering .

* study, the measured accelerations and driving only the first three modes). The general shape ~.
- force signals were input to a signal analyzer, of the curves are quite similar with the buried .

and the reduced data were obtained in the form structure peaks being somewhat broader, indi-

Forc versus cating higher damping ratios. The peaks at . -

of mechanical impedance Ve ocity) frequencies less than 100 Hz, being well below
frequency plots and component vector (Co-Quad) the frequency range of structure response as
frequency response plots. Using such data- obtained from the uncovered tests, appear to be

*displays for each measured acceleration on a due to motion of the surrounding soil. Resonant
*structure, the dynamics of the structure can be peaks for Structure 3B after burial (Figure 5) -

*described completely, i.e., natural frequencies are not nearly as distinct and well defined as
identified and mode shapes and damping ratios those of Structure 3D. The response curves - f*.

*obtained. These experimental techniques are indicate broad peaks at frequencies of 142 and
described in References 4, 5, and 6. 310 Hz for symmnetric loading and 175, 350, and

450 Hz for asymmietric loading. Note also the
Response curves, typical of plots obtained tendancy of the fundamental vibration mode to

for all measurement points on the box struc- be shifted to a lower frequency after burial ~V
tures, are shown in Figure 4 for Structure 3D (142 Hz compared to 150 Hz) while the higher
and Figure 5 for Structure 3B. These figures frequencies are shifted upward (320 Hz compared

-contain both mechanical impedance and component to 300 Hz for the third mode). This trend is
vector curves, from which the resonant peaks consistent with previous observations (e.g.,

*for the uncovered structures are readily iden- Reference 7). From the response plots of Arch
tified. In Figure 4, resonant peaks for Struc- Structure 3A after burial (Figure 6), no
ture 3D are seen to occur at 240 Hz and 415 Hz. resonant peaks are observed. These curves are
These frequencies correspond to the first two the type that might be expected from a highly
synmmetric modes. Similar plots for asynmmetric damped, or even critically damped, system. *-

*loading, i.e., vibrators 180 deg out of phase, Mode shapes for the buried Box Structures 3B
indicate the first asynmietric mode to be at and 3D are shown in Figures 10 and 11, respec-
315 Hz. Curves from tests with the structure tively. In order to illustrate the manner in
buried indicate the same 240-, 315-, and 415-Hz which the structure is responding at various
natural frequencies with the response curves frequencies, deflected shapes (not mode shapes)
being somewhat broader than the sharply defined of Structure 3A, after burial, are shown in
peaks for the uncovered case. Figure 12.

From Figure 5, resonant peaks for Struc- Possible explanations for the absence of

ture 3B, uncovered, occur at approximately 150 resonant peaks in the response plots from Arch
and 300 Hz. These frequencies correspond to Structure 3A include insufficient force input
the first two symmuetric modes. The first from the vibrators and excessive damping. '.
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Perhaps the most obvious cause for no resonances a. For the breathing mode: -'
would be insufficient force input. However,
the maximum accelerations measured in the 0.97 mI (1)
buried arch tests were typically 0.5 g as wB R T
opposed to approximately 1 g for the uncovered where
case, indicating ample signal strength. Maxi-
mum displacements of the arch structure were R = radius of the arch

approximately 2 x l0-  inches for the uncovered E = Young's Modulus

case and 4 x l0-  inches for the buried case. A = cross-sectional area of thearch ,.- -.
Comparing these displacements with the displace- m = mass per unit length of arch

ments of Box Structure 3D, 1 x 10-4 inches -

uncovered and 4 x 10-  inches - buried, it is b. For the flexural modes:
seen that the amplitude of motion at the soil/ C
structure interface was approximately the same Wn= n (2)
for both structures. Thus, insufficient input -m

force will not explain the failure to excite
natural frequencies in the buried arch. where

Cs dimensionless coefficient .~

Damping ratios of the uncovered structures, n dependion acomety
as determined from the component vectc." response depending on arch geometry
plots, were within the range of expected values. and mode of vibration R.
For Box Structure 3D, measured damping ratios S length of the arch axis = Ro

-. varied from 2 to 6 percent of critical; for Box therc a is the
Structure 3B, 2 to 7 percent of critical; and the arch and e is the
for the Arch Structure 3A, 2 to 5 percent of central angle of the arch
critical. Generally, the lower damping values I = moment of inertia of arch
were obtained at the higher frequencies, cross section
whereas, the larger damping values were meas- m = mass per unit length of arch
ured at the first natural frequency. c. For the breathing mode:

After burial, damping ratios were found to 4
vary from 6 to ll percent of critical for Box WB = 4312 rad/sec (686 Hz) (3)

Structure 3D, and for Box Structure 3B, 13 to .-
* " 21 percent of critical. Due to the nature of d. For the first antisymmetric flexural

the response curves, damping ratios could not mode (the sway mode), assuming a fixed support ..
be determined for the buried arch structure. arch:
The response curves for the buried arch are 4
indicative of damping ratios greater than 20 to C1 = 43.22 ".
30 percent of critical. Radiation damping was x.'
also considerably greater for the arch structure and
since the compressional wave velocity for the
compacted soil backfill was approximately twice Wl = 216 rad/sec (34.4 Hz) (4)

that of the sand backfill around the box struc- e. Fo t
tures. Therefore, the most likely explanation e. For the first symmetric flexural mode:

_- for the failure to observe resonant frequencies
in the buried arch is that there was sufficient C2 = 84.70

damping to suppress resonance. and
FREQUENCY CALCULATIONS

= 2 423 rad/sec (67.3 Hz) (5)

The first step in the dynamic analysis of
• the uncovered structures was to make an approxi- Reference suggests that the period of vlbra-

mation of the natural frequencies. The equa-- tion will be increased somewhat by the added
tions used to calculate the frequencies, in mass of soil cover. Since the amount of soilradians per second, of the extensional mode that vibrates with the arch is uncertain, an
(also called the compression or breathing average depth of cover will be used. The '"

mode), the first antisymmetric flexural mode average depth of cover is calculated as follows:
(also called the sway mode), and the first 2
symmetric flexural mode of the arch were taken H (2 2R J1

0. from Reference 1. Using these equations, the avg 2R
problem is formulated as one of plane strain, (2 + 7)(14) - n(49)/2
i.e., treating the structure as being two- 14
dimensional (2-D).

"3.50 ft (.106 m)

VT','P "W"- -"7-.W 4 -
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Distributing this mass of soil along the circum- ARCH FINITE ELEMENT ANALYSIS "
ference of the arch will modify frequencies so
that A 2-D finite element analysis was conducted .,

, ( i ) of the arch structure to determine the modal(1 = F _ ) frequencies with and without soil cover. Soil
where m is the mass intensity of the added boundaries for the problem corresponded to the
soilhover ad the mass intensity of the excavation made for construction so that only
soil cover and m the mass intensity of the the soil backfill was included in the grid.
concrete arch. Thus, with 150 pcf for the Two sets of frequencies were calculated, one
weight density of concrete and 110 pcf for the using a soil density of 110 pcf and a soil
weight density of soil: elastic modulus of 31,000 psi and the second

using zero soil density and 100 psi modulus,
l ( l)(3 5 w(1) = (0.530),l corresponding to the uncovered structure.

(6) The computer code used for these calcula- "'."'7N
= 114 rad/sec (18.2 Hz) tions was SAP IV, a structural analysis program

for static and dynamic response of linear
likewise systems, developed by Bathe, Wilson, and Peter- "* ..- ,.,".
w= 224 rad/sec (35.7 Hz) (7) son of the University of California, Berkeley

(Reference 9). A plane strain 2-D element e
and based on an isoparametric formulation was used.

The grid was composed of 170 elements and 203
wB = 2283 rad/sec (364 Hz) (8) nodes with 340 degrees of freedom. The boundary

nodes at the base and sides were fixed against
The roof slab fundamental period fortranslation in al directions. The first 10

box structures was calculated from an approxi- mode shapes and natural frequencies of the arch
mate simple beam equation taken from Reference 8 and soil-arch system were determined using the "

2  subspace iteration method in SAP IV. The
T = C - (9) higher modes calculated with soil cover

d * involved mostly soil motion with very little l
structure deformation. Therefore, results for

where only the first three modes are shown in

T = natural period, seconds per Figure 13.

cycle 6 A three-dimensional (3-0) finite element
C constant = 1.177 x 10.6 for analysis of the arch structure has recently

fixed ends been conducted by Weidlinger Associates (Refer-
L = span length, in. ence 10). The calculated flexural mode shapes
d effective depth of beam, in. at 71 and 100 Hz were in agreement with the .)..
p = tensile reinforcement ratio measured shapes at 70 and 104 Hz for the ,

For Structure 3D uncovered structure.

T = 2.26 msec BOX FINITE ELEMENT ANALYSIS

and the fundamental frequency f is A 3-D finite element analysis was con-
I = 442 Hz (10) ducted of each box structure without the soil -

fo =  =42Hcover to determine the modal frequencies and % N
shapes. A grid composed of 196 3-D shell " ,

For Structure 3B elements, 418 nodes, with 1214 degrees of
T = 5.65 msec freedom was used with the SAP IV code to obtain ,..

the first 20 mode shapes and frequencies. Due
and to the size of the problem, only one-half the

f = 177 Hz (11) length of the structures was used; thus, only -
B symmetric modes, with respect to length, were

The modified frequencies, due to the mass of obtained.
the 2 ft of soil cover, become

S .Rigid body, flexural, and torsional modes
1 501 o "7 (12) were obtained. Since only a line of transducers -f (0.637)fD was used In the experimental work, all the

finite element mode shapes were not detected.
f= 281 Hz (13) Comparisons of the experimentally measured modeshapes with those from the finite element •

and calculations are shown in Figures 7 and 8.
f (0.504)fB  89 Hz (14) Other analytical mode shapes illustrating the= = 3-D behavior of the Box Structures 3D are shown

in Figure 14, with the shapes of Box Structure
3B being similar. -
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DISCUSSION covered structures, correlating somewhat to the
response at lower frequencies of the 2DOF

bu Vibration tests were conducted on two model.this study
rectangular concrete box structures and a on to..del
concrete arch structure both uncovered and CONCLUSIONS AND RECOMMENDATIONSburied under 2 ft of soil. Natural frequencies -

of the uncovered structures were calculated The conclusions obtained from this study
from available formulas, and a finite element are:
analysis was conducted for each structure. A
comparison of the fundamental frequencies (1) There was very good correlation I i
determined from the various methods is presented between the 3-D finite element and experimental
in Table 1. natural frequencies and mode shapes for the

Results of the buried structure tests were u dc

considerably different from accepted calcula- (2) Based upon the 3-D behavior of the
tion methods, e.g., the added mass approach and structures as determined from the vibration
linear 2-D finite element calculations, tests, 2-D (plane strain) analyses do not
Response of the structures buried, as compared adequately predict uncovered natural frequencies
to uncovered, was different for each structure. and mode shapes for these type structures.
Damping values measured were considerably
different for the two box structures and (3) The results of tests on the buried
appeared to be greater than 20 to 30 percent of structures indicate that the effect of soil
critical for the arch. Although the buried cover on natural frequencies and damping appear --
structure problem is quite complex, a simpli- to be dependent upon the structure/soil stiff-
fied 2 degree of freedom (DOF) model can be ness ratio. Frequencies obtained by modifying
used to investigate trends in behavior of the the uncovered frequency with an "added soil
soil-structure system as the damping and the mass" factor do not correlate with experimental
ratio of structure stiffness to soil stiffness results. Therefore, the results of this study

-. * are changed. The transfer function approach, suggest that commonly used, semi-empirical
as presented in Reference 11, will be used to design manual techniques may predict erroneous
define the structure displacement. Using the modal frequencies for shallow-buried structures.
physical properties of each structure and the
best available soil properties data, the Additional experimental work is needed to
parameters of the problem were identified, expand the data base of buried structure dynamic
i.e., mass (M), stiffness (K), and damping (B). response. Significant soil parameters, i.e.,

% For structure damping of 5 percent and soil stiffness and radiation damping, also need to
- damping of 10 percent, the responses of Figure be more accurately defined in order to reliably

15 were obtained. By applying a sinusoidal predict the effect of soil cover on structure
input force to Mass 2 (structure), the modulus response. In particular, parametric studies

of the resulting complex mobility (of employing vibration testing should be conductedForce on concrete structures or slabs having various .
iAlass 2 is plotted against frequency. As the span-to-thickness ratios with a variety of

%o stiffness ratio of structure to soil, i.e., carefully controlled backfill conditions. Such
K structure
-K s il varies from approximately 0.6 to 6, tests would band types of response with respect
K sofll to structure/soil stiffness ratio in addition

the response of the structure changes both in to providing additional information on radia-
magnitude and frequency. Specifically, as tion and other types of damping mechanisms. %
shown in Curve A, for a structure having a
fundamental frequency of 240 Hz and a damping REFERENCES .
ratio of 5 percent critical, the structure <. -
frequency shifts to 244 Hz after combining with 1. Crawford, R. E., Higgins, C. J., and
a mass of soil, and the response is indicative Bultmann, E. H., "The Air Force Manual for
of slightly higher damping. From Curve B, the Design and Analysis of Hardened Structures," 6_x

*response of a structure having a fundamental AFWL-TR-74-102, Air Force Weapons Laboratory,
frequency of 150 Hz, after combining with a Air Force Systems Comnand, Kirtland Air Force
soil mass, appears to be highly damped and the Base, NM, Oct 1974.
frequency of peak response is poorly defined.
The sharp peak at the lower frequency is due 2. Newmark, N. M. and Haltiwanger, J. D.,
to the response of mass 1 (soil). Similarly, "Principles and Practices for Design of Hardened
from Curve C, the response of a structure Structures," AFSWC-TDR-62-138, Air Force Special
having a fundamental frequency of 70 Hz, after Weapons Center, Air Force Systems Command,
combining with a soil mass, is highly damped Kirtland Air Force Base, NM, Dec 1962.
with no peak. The lower frequency peak again
represents the response due to mass I (soil). 3. American Society for Testing and Materials,
These curves are similar to those obtained from "Standard Specifications for Deformed and Plain
the vibration tests. Although highly damped, Billet-Steel Bars for Concrete Reinforcement,"
evidence of response at frequencies below A615-68, 1968 Book of ASTM Standards, Part 4,
50 Hz was seen in experimental curves for the Philadelphia, PA, 1968. .,e *4*

49

%. ....... .

%- 1'%'

w" " ... , , ", .

o ." . ,, . . - -. .. -- -- . .p , .. .* .. .. . . , . ". .. . ' ,, . % ", * ,L .+ .. X .++ • % % " % . - , , .CIL. ,+ q+



w-
,  

.. '"

4. Keller, A. C., "Vector Component Techniques: 8. Allgood, J. R. and Swihart, G. R., "Design
- A Modern Way to Measure Modes," Sound and of Flexural Members for Static and Blast Load-

Vibration Reprint, Spectral Dynamics Corpora- ing," ACI Monograph No. 5, Detroit, 1970.,-.' ~tion, Mar 1969. " ."'.
tion, Mar.1969. 9. Bathe, K., Wilson. E. L., and Peterson,

5. Rades, M., "Methods for the Analysis of F. E., "A Structural Analysis Program for •
Structural Frequency-Response Measurement Static and Dynamic Response of Linear Systems,"
Data," Shock and Vibration Digest, Vol 8, No. EERC 73-11, Jun 1973 (revised Apr 1974), .'.
No. 2, Feb 1976, p 73. College of Engineering, University of CA,

Berkeley, CA.
6. Jennings, P. C., Mattiesen, R. B., and
Hoerner, J. B., "Forced Vibration of a Tall 10. Crafton, Paul A., Shock and Vibration in
Steel-Frame Building," International Journal Linear Systems, Harper & Brothers, Publishers,
of Earthquake Engineering and Structural New York, 1961, pp 135-140. 1 O
Dynamics, Vol 1, No. 2, Oct-Dec 1972, pp 107-
132. 11. Isenberg, J., Levine, H. S., and Pang,
7 a s B.0 rS. H., "Numerical Simulation of Forced
7. Novak, Milos and Beredugo, Y. 0., "Vertical Vibration Tests on a Buried Arch," Weidlinger
Vibration of Embedded Footings," Journal of the Associates, Menlo Park, CA, Mar 1977. ". ,

Soil Mechanics and Foundations Division, ASCE,
Vol 98, No. SM12, Dec 1972.

TABLE 1
Frequencies for the Fundamental Mode of Response

4 Finite Element 5
Experimental Formulas 3-D 2-D

Structure Uncovered Buried Uncovered Buried Uncovered Uncovered Buried *,.,.

a, Box 3D 240 240 442 281 226 ** **,.a,

Box 3B 150 142 177 89 144 ** ** "- "

Arch 3A 70 * 34 18 71 30 26 O

* Unable to determine. .
** 2-D FE analysis not performed. . ,,;
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DYNAMIC RESPONSES OF A SOIL

---

COVERED CONCRETE ARCH TO IMPACT

AND BLAST LOADINGS

Phillip T. Nash
US Air Force Armament Laboratory

Eglin AFB, Florida

and

Jimmy H. Smith and W. Pennington Vann
Texas Tech University

Lubbock, Texas

An analytical model capable of predicting responses -
of soil-covered concrete arches to dynamic loadings is -' .

described. Finite element techniques are used to describe
the complex soil-concrete structure. Beam elements capa-
ble of inelastic bending and axial deformation are used to
describe the concrete arch, and linear triangular elements
describe the soil covering. Differences in the compres-
sive and tensile properties of the soil are modeled using 0
bilinear bar elements as connectors between the triangular
elements. Numerical techniques are used to solve the dif- "' "
ferential equations involved. Blast loading functions for
the arch were determined in a series of nondestructive
scaled experiments and were used to develop load function
generating subroutines within the analytical model.

Experiments were conducted using static impact and 0
blast loadings on the structure. Acceleration-time his-
tories were measured at several locations around the arch
and integrated to determine velocities and displacements.
Strains were measured at several points on the arch during
the blast testing. Responses determined by experimenta-
tion compared favorably with those predicted using the
analytical model. Total arch responses are displayed for
the analytical predictions using computer graphic techni-
ques.

INTRODUCTION complex hardened targets are very ex-
pensive, even when performed on scaled

An analytical tool has been devel- models.
oped to help solve the complex problems %

• involved in determining hard target vul- Analysis techniques are therefore
- nerability. Structural systems hardened necessary to provide an economical means

with soil and concrete present extremely of studying hard tarzat vulnerability.
difficult problems in identifying weapon The analytical technique discussed here-
effectiveness, in is a computer program designed for

Vulnerability Analysis of Non-Linear
% Most vulnerability analyses depend Ynteracting Soll and Hardeiied struc-

heavily upon test data. Target vulner- tures. Thus, the acronym VANISH.
U ability by nature requires a definition

of possible failure mechanisms, so each Any such analytical technique must-. test must include failure of the target. be proven to be accurate in order to en-

" Useful empirical data must also include sure its reliability. During the devel- '7
enough data points to ensure the reli- opment of VANISH a selected hardened
ability of the test procedures and the target was studied experimentally, and
choices of the parameters tested. It results were correlated with predictions
is evident that such test programs for of the analytical model. VANISH solu-
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tions were also compared with exact so-
lutions. The test series included A
static. harmonic, impact, and blast --.
loads. Comparisons between analytical
and experimental results for these dif- A4
ferent cases are described herein.

ARCH STRUCTURE DESCRIPTION, -.

Development of the VANISH code be-
gan with the study of an aircraft shel- .-
ter similar to the one shown in Figure I
1. This shelter has been used as a
model target throughout the development
and validation of VANISH. As shown in
Figure 1, the shelter consists of a

- semicircular barrel arch made up of pre-
fabricated concrete ribs, covered with
soil. Each semicircular rib is made up
of two quarter-circle elements bolted
to adjacent ribs at four locations along O i
each segment. Details of the scaled
arches studied are shown in Figure 2.
Soil is placed on the structure to a
depth of two feet at the crown and -_ _,, .__,_- ' -,
slopes along the sides at the natural ,. .
angle of repose for the soil.

13.125"

".•'.-,.. '.
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SECTION A-A

a) Without soil cover Fig. 2 - Arch Rib Geometry

PROGRAM DESCRIPTION (THEORETICAL ,. .

PRESENTATION)

VANISH is a finite element code
capable of analyzing the response of a
complex target system with accuracy,
reliability, and convenience. In par-
ticular, the computer code is designed
to model target systems hardened with
soil and concrete. While the code has
special capabilities for hardened tar-
gets, it is intended to be as general "
as possible so that problems involving

b) With soil cover soil-structure interaction, framed
structures, aircraft structures, and S
other structures can also be analyzed..

Fig. 1 Hardened Aircraft Shelter Both static and dynamic planar problems
can be solved considering either linear
or nonlinear behavior of the structural
materials. Dead weight loads can be in-
cluded in the analysis. Static loads £,.,,.
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are applied incrementally for static Damping of any structural system
nonlinear solutions, and numerical inte- can be input as relative damping (pro-

* gration is used to solve the differen- portional to the stiffness of the sys- .
tial equations involved in dynamic solu- tem), absolute damping (proportional to-
tions. the mass of the system) or a combination

of both. Loads are applied at the nodes
Three basic finite elements are and are specified for each time step for

available in VANISH as shown in the dynamic cases. Values of loads at each
analytically described aircraft shelter time step can be input as data or gener-
of Figure 3. First, straight prismatic ated using force-generating subroutines.
planar beam elements are used to des- Element forces and stresses are deter- ,
cribe the concrete arch section of the mined for each time step and element
shelter. These beam elements have six falrsaeietfe. A more de- '

degrees of freedom and can undergo in- tailed description of the computer code S
elastic bending and axial deformation. is presented in "Theoretical and Experi-
A short beam element is used to model mental Investigation of Buried Concrete
the load carrying capabilities of the Structures, Volume I--Analysis and Ex- ".
joint at the crown of the arch. Second, periment," AFATL-TR-76-55.
constant strain triangles are used to %
describe the soil covering. These ele-
ments have six degrees of freedom but PROGRAM VALIDATION
are restricted to linear behavior.
Third, nonlinear behavior of the soil Extensive testing has been perform-
is modeled using bar elements as con- ed to ensure the accuracy of VANISH an-
nectors between the triangular elements. alysis. Exact solutions as well as re-
The straight, prismatic bar elements are sponses in static, harmonic, impact, and
incapable of carrying moment and are blast loading tests have been correlated
thus strictly tension and compression with VANISH predictions for the aircraft
elements. Bilinear material properties shelter structure. Agreement between
for the bar elements are used to des- analytical prediction and experimental O
cribe the different tensile and compres- results has been satisfactory thus far.
sive properties of the soil. The bar %
elements are positioned where tensile A. Exact Solution. Results from "%. %
stresses are expected to produce cracks an exact solution of a statically loaded .0 %

in the soil. In this study of blast bare arch ar( compared to a VANISH solu--- ,
loading inside the buried arch, circum- tion of the sme system in Figure 4. I.

ferential tensile stresses were common. Here vertical deflection is plotted as
Bar elements were therefore placed as a function of position around the arch. S
element connectors across radial lines Two-hinged (with continuity at the
emanating from the center of the arch crown) and three-hinged (hinged at the .-.. .

as shown in Figure 3. crown) configurations are both consider- .

Triangular Soil

FieElementsl
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..-. , [~.
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Fig. 4 -comparison of Vanish to Exact Solution0

*ed. Results from the exact solution and B. Harmonic Loading. Laboratory
Nthe VANISH solution agree within 2 1/4 experiments were conducted using both '

percent. Experiments using one-rib, bare and soil-covered arches subjected
three-rib, and five-rib sections of the to harmonic loadings. Harmonic loads
bare concrete arch bolted at the crown were imposed either horizontally or ver- *

and loaded with concentrated static tically at the crown and velocities and
loads at the crown reveal arch deflec- displacements were recorded at various

Stion values that are between those for locations around the arch. Loading fre-
the hinged and continuous configura- quencies were varied from 1 to 30 Hz.

rtions, as shown in Figure . Actual Natural frequencies and mode shapes were
measured deflections can be accurately determined and correlated with VANISH
correlated with VANISH predictions by predictions. The asymmetric and symme-
modeling the connection with a bea ele- tric mode frequencies for the soil-

Sment having a very small percentage of covered arch were determined experimen-
the moment capacity of the other arch tally to be near 5 Hz and 9 Hz, respec- .
elements. tively. VANISH predictions for these

two frequencies were 4.9 Hz and 8.7 Hz,
respectively, giving agreement within ,. ]
4 percent.

Computer graphic techniques were
used in conjunction with VANISH to pro-

A. duce the plots of the first symmetric
and first asymmetric mode shapes for -
the soil-covered arch that are shown in %
Figure 6. Displacements have been ex-
aggerated in the plots to better iden-
tify mode shapes. The radial lines
chosen to model cracking in the soil due
to blasts within the structure appear . .
to act as shear planes for the modes -

•--- .. . -, plotted.

AT ............ I.9 C. Impact Loading. Field tests
were conducte with te aircraft shelter4 shown in Figure 1 using impact loads.
Loads were imposed by dropping a known
weight from a specific height onto a

Fig. 5 Effect of Crown Connection receiving frame attached to the arch as - %
illustrated in Figure 7. Structural .

on Vertical Static Deflec- response was measured at the point of "
tions loading using a vertically oriented ac- .

celerometer. Acceleration-time respon- -
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Impact Test

_ IIFses, as shown in Figure 8(A), were nu-
merically integrated twice for compari-
son with the VANISH predictions shown in
parts (B) and (C) of the figure. Dis-

Fig. 6 -Dynamic mode Shapes placements were found to be extremely
small (0.004 inches) and agreed reason-
ably well. The high frequency response
shown in the acceleration-time curve is
attributed to the accelerometer mount.
A phenolic block was used to orient the
accelerometer vertically. The block ex-
hibited a very high frequency response

WEIGtT-1324LBS (602 XG (8000-11000 cps). Integration techni-
DROP HEIGHT-I12 WCHES (30.5 Cml Igues adequately filtered the response

from the block for the impact test, but
- - additional filtering was required for

* blast test data.

- i'- blasD. Blast Loading. A series of -

blas tests was conducted against the

scaled aircraft shelter. Small, non-
destructive charges were detonated in- -

Fi.7 Impact Loading Test were measured at eight locations around
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one arch section. Vertical and horizon- Using known values of the first
. tal accelerations and concrete strains arch frequency 0 and the accelerometer

were measured on the adjacent arch at frequency, w, the last equation was used
the same locations as the blast pres- with the measured accelerations Y to

- sure measurements. Charge positions obtain arch accelerations at a sefies of
and sizes were varied. A typical blast time steps. This record was then inte- 0
pressure-time history is shown in Fig- grated numerically two times to produce
ure 9. Measured pressure loadings were a displacement-time curve that could be
used to develop loading functions for compared to vanish curves, as shown in
the analytical model. Acceleration Figure 11. ".

*- levels for the arch were difficult to
discern from the measured accelerations During the laboratory experiments
because of the high frequency response using harmonic loadings, fundamental
of the accelerometer mounts, as can be mode damping was found to be between 24.0

. seen in Figure 10. Regarding the mount and 28 percent of critical. As shown in
as a single-degree undamped system made Figure 11, VANISH solutions consider 25 "
it possible to determine the structural percent critical damping predicted dis-
responses of the arch, however. By con- placements greater than those measured
sidering the arch motion to be in the field tests. Response frequen-

cies were also higher than those found
Y = Yao sin~t in the test series. Increasing the

damping in the VANISH solution resulted "•
where in displacement and frequency values

that were closer to the field results.
Y = arch displacement From Figure 11 it appears that the re-a sponses correlate best for damping be-
Y = some magnitude of arch tween 40 and 50 percent of critical.ao displacement Considering the extremely complex load-

time histories imposed on the arch due
frequency of arch to internal blasts and the construction 0
response, tolerances for the shelter, the experi-

then the measured displacement due to
this input support displacement is

-5 y y ( 2 (sinot Q sinwt 80

m ao 2_s2 W W2-2

where 4..

Ym measured displacement 4 _..W.

m

W = frequency of mount 0 [ %%F
response. 0 .01 .02 .03 .04 .05

The corresponding acceleration can then Time (sec)
be determined as .

Fig. 9 - Typical Pressure-Time " '

History
y _-22 y sint

a ao 400

and _ 3300

2 ( 2 sinot sin9t
w + WO ) -Ym Yao 2 -a2 W2R2 A- 200 -- '-.-.

Y w IDFL10
ao

Therefore,
0 .02 .04 .06 .08 .10

_Q2 sinot
Y a Y Time (sec)a W2 DLF m

Fig. 10 - Acceleration-Time History
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Fig. 11 - Displacement Comparisons for Blast Loading

mental and analytical results compare trated in correlating the results. A
very well. This correlation of the re- better understanding of target response
sults indicates a large amount of damp- mechanism was gained during each phase
ing in the field structure and the im- of the validation series. O
portance of being able to incorporate
damping into the analytical model. VANISH has proven to be an accurate

method of analysis and will be a valu-
able tool for vulnerability analyses.

CONCLUSION Analysis techniques such as VANISH offer
flexibility in approaching vulnerability

VANISH has proven to be highly ac- studies and can be used to gain insight
curate for performing static analyses. into target failure mechanisms. Most
Analytical and experimental results important of all, VANISH will be used to
correlated very well for the harmonic greatly reduce time and cost require-
loading experiments. Comparisons of ments of future hard target vulnerabil- z. .-.
predicted and measured responses for ity analyses.
the impact loads agreed reasonably well. .
It is important to note that the de- .-
flections from the impact loading were
extremely small, high-frequency respon-
ses that were determined by numerical
integration of measured acceleration
time histories. Results from the blast
tests exhibited the same general types W
of response as determined analytically .-,
and agreement between predicted and mea- %
sured responses was considered satis- _e
factory. The importance of choosing
proper damping factor values was illus-
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Discuss ion

Mr. Gerardi (Air Force Flisht Dynamics Lab): Mr. Nash: It is really a bi-linear material

How did you input your forcing function of the property description. We had initial slope

blast into your mathematical model? equal to the elastic modulus, then we go into

the plastic region, and you're able to go out

Mr. Nash: These forced generating sub-routines the stress strain diagram at a very small slope.
were special to this structure, and they were Then, if there is any return of the structure, -

developed especially for this structure. We we return down the elastic curve.

"4" input them using the modified Friedlander

equation for air blast. We smoothed out the Mr. Birchler: Is there any coupling betwenn
multiple peaks. Since this is an impulsive axial force and bending moments?

loading, we don't feel that we have lost the

accuracy. Mr. Nash: No. '...

Mr. Gerardi: Did you input a time function into Mr. Plamondon (Air Force Weapons Laboratory):

the model? You stated that the base of the arch was keyed
into the support slab under the internal , .

Mr. Nash: It's just a sub-routine. I think pressure loading. Could you comment on the

this points out the flexibility we hope to have behavior of that connection? If it separated
in the model. If you used NASTRAN or one of what would that do to your analysis procedures?

the larger programs, you wouldn't have this S

flexibility to be able to work at your desk. Mr. Nash: We have discussed that among our-
selves. I don't think there was any lifting , .

Mr. Krause (Waterways Experiment Station): of the arch. The joint fails long before the ,.- -

You stated that damping was a function of the entire structure lifts. I think that is a

stiffness and the mass in the system. Did you ratio of the strength of the arch and the

use these terms for soil damping, and if so, weight of the structure for an internal blast.

how did you obtain your soil properties, and If if were a continuous arch, it would be a

what did you use for a typical soil damping different problem." term?

Mr. Nash: We haven't conducted any tests to

. determine the exact damping coefficients for
the soil media. There are an input to the-

- program. It goes into a matrix and this

matrix, in turn, is used . the analysis

process. We were able to determine some damping
coefficients from the harmonic tests conducted

at Texas Tech University.

Mr. Krause: Have you compared your two- , "'
dimensional model results to any other result s. ",

obtained from exciting the entire structure?

Mr. Nash: Not yet. I think Rogers talked about

some tests they conducted at Eglin Air Force
Base a few years back.

Mr. Birchler (Bl ( Corporation): Will you describe

your beam model and the kind of integration

schemes that you used?

4- Mr. Nash: The integration is just a Newmark

Beta method. The beam model has rotation on .1. .
each of the axial forces.

Mr. Birchler: The sunary said it was a nob-
linear model. What kind of nonlinear terms did

you use?* 6•

-..:

%
'p,,. . . '

I 74 ,

• . . . . . . . . . . .

-- " - - - ". - % . . . . . ,...



'0 9

INSTRUCTURE SHOCK ENVIRONMENT OF BURIED STRUCTURES 0
SUBJECTED TO BLAST INDUCED GROUND SHOCK

-".

S. A. Kiger
USAE Waterways Experiment Station0

* Vicksburg, Mississippi

Two shallow-buried reinforced-concrete structures were tested with subsurface
high-explosive (HE) charges. Instructure and free-field shock spectra gener-
ated from these tests were used to develop guidelines for predicting structural
response and instructure shock environment for HE generated ground shock.

SUMMARY instructure amplification factors for equipment%%
response prediction for threat-structure systems

The objective of this paper is to deter- that are some scale multiple of those investi-
mine the shock environment in a buried pro- gated in this study.
tective structure subjected to the effects of
nearby detonations of subsurface high-explosive INTRODUCTION
(HE) charges. This investigation was conducted *
as a part of a Defense Nuclear Agency-sponsored The major concern in the design of a
study to determine the effects of localized cormmand and control center is to prevent struc-
explosions on the response of hardened cormmand tural failure. However, the operation of
centers. sophisticated electronic gear within the center

-~ may be impaired at shock levels much less than
Two concrete box structures were instru- those required to fail the structure, thus

mented and subjected to the explosion effects preventing the center from completing its
of a total of eight 21-pound spherical TNT mission. In order to economically design shock
charges. These structures were approximately isolation devices to protect the various compo-
1/4-scale models of cormmonly found hardened nents within the structure, the internal shock
structures. Measurements were made of the environment must be well defined. For long -

accelerations and velocities caused at various duration ground shock, such as the ground
locations in the soil and the structure by the motion associated with a nuclear event, the
detonation of the spherical charges at various procedure for the modification of the free-
charge-to-structure locations and distances. field ground motion to predict the instructure F

motion is well documented. However, procedures--"
The procedures normally used for esti- for predicting the instructure shock environment ~

mating peak instructure displacements, veloc- in the case of short duration ground shock, *

ities, or accelerations caused by large-scale such as that generated by conventional weapons,
events, such as earthquakes or nuclear weapons are not so well established.
generated ground shock, predict the instructure
response to be an amplification of expected OBJECTIVES
free-field motion. The shock spectra developed

* from these localized HE test data indicate that The objectives of this study are threefold;0
the horizontal free-field motion should be first, to establish a set of suggested factors
reduced to predict peak instructure response. with which to modify the free-field shock

* .Insrutur shckspectra to predict peak instructure motions for
Intrctreshckattenuation measurements a conventional weapon threat; second, to estab-

indicate that no horizontal attenuation of the lish a set of shock specta which can be used to
*acceleration pulse occurs across the floor of design instructure shock isolation devices; and

*the structure and, except for a peak at the third, to determine the attenuation of the peak
leading edge of the structure, no attenuation acceleration across the floor of the structure.

The instructure acceleration signals were
used to generate shock spectra for various A test series of eight 21-pound spherical
levels of damping. These spectra, along with TNT charges was conducted. The series consisted
peak values of floor displacement, velocity, of two tests on a relatively soft structure
and acceleration, can be used to determine with a span-to-depth ratio of ten and three

~4 ,.p. %+ .m°
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tests on a relatively stiff structure with a Reference 1 with the permission of the author.
span-to-depth ratio of four. In addition,
three tests were conducted to determine instruc- Figure 6 is a plot of scaled acceleration
ture acceleration attenuation, versus scaled range using cube root scaling,

i.e., the quantities of time and length are
TEST STRUCTURES divided by the cube root of the charge weight. O

The peak acceleration data obtained in the
The two structures investigated were current experiment consistently lower than

typical of many hardened buried structures of would have been pr( ed from previous results.
concrete slab type construction. The struc- This was probably du to the low compaction %
tures, labeled 3C and 3D, were reinforced level of the backfill material in which the
concrete box structures, having a roof, floor, tests were conducted. The backfill was placed - .
and wall span-to-depth ratio of 10 and 4, with a front end loader and compacted by
respectively. Both structures were 16 feet repeated passes with the machine. This rela- 'O
long by 4 feet wide by 4 feet high (inside tively low compaction of the soil should tend
dimensions); the overall wall thickness to decrease shock levels. .-...,
including concrete covers on the tension steel
of 3C was 5.8 inches and that of 3D was 13 The peak velocity data collected in these
inches. Principal reinforcing steel was tests are shown in Figure 7. These data points
1 percent for both tension and compression. are very close to the values predicted from
The structures were fully buried with 2 feet of previous test results.
compacted backfill cover at the roof line. O
Structural details and dimensions are shown in Maximum displacement data collected in
Figure 1. these tests are shown in Figure 8. These data

points are generally higher than would have
TEST DESCRIPTION been expected from previous test results. -.

Again, the explanation is orobably the low
A sketch of the test layout and instrumen- compaction of the soil.

tation is shown in Figure 2. Three tests were
conducted for the instructure acceleration Figures 9 and 10 show the 5 percent damped
attenuation experiment. Acceleration gages free-field spectra for horizontal motion at a
measuring horizontal and vertical data were range of 8 feet. The peak acceleration, veloc-
placed at five evenly spaced locations on the ity, and displacement measured at the center of
floor of the structure as shown in Figure 2a. the floor, with the explosive at a range of .
The explosives used were 21-pound spheres of 8 feet from the leading edge of the structure ,.. .
TNT, buried to midstructure depth and placed at for structures 3C and 3D, are also shown. The
ranges of 10, 8, and 6 feet from the end of peak horizontal floor motions are shown in
structure 3D. Figure 9 and peak vertical floor motions are 0

shown in Figure 10. The curves In Figures 9
Tests on structure 3C were conducted at and 10 show that the peak floor motions are

positions labeled Test 1 and Test 2 and on less than would have been predicted from the
structure 3D at positions labeled Test 1, free-field spectra. For example, for 5 percent
Test 2, and Test 3 in Figure 2b. Structure 3C damping at a range of 8 feet, the reduction
was cracked during Test 2. All tests were factors as determined from Figures 9 and 10,
conducted with 21-pound spheres of TNT buried for structure 3D are 0.1 for horizontal acceler-
to midstructure depth. Instrumentation included ation and 0.04 for vertical acceleration.
vertical and horizontal instructure acceleration Reduction factors for 0, 5, and 10 percent
and velocity measurements at the center of the damping are given in Table 1. The reduction
floor and horizontal free-field acceleration factors for structure 3C are average values
and velocity measurements as shown in Figure 2b. from tests at ranges of 8 feet and 6 feet, and

those for structure 3D are averages from tests
* TEST RESULTS AND DATA ANALYSIS at 8, 6, and 4 feet. These reduction factors,

along with the free-field shock spectra at the
All data were recorded on magnetic tape in leading edge of the structure, can be used to S

analog form. Each channel was subsequently predict peak values of the instructure motions.
* reduced to digitized format, and time-response

plots made of the digitized data. Digitizing Peak floor motions and shock spectra for
was done at the rate of 40 kHz, i.e., 40,000 the instructure response for 0, 5, and 10
samples per second. Sample acceleration, percent damping are shown in Figures 11 through
velocity, and displacement response records are 20. Amplification factors for predicting peak
given in Figures 3, 4, and 5. values of the Instructure response, as deter-

mined from these curves are given in Table 2. 0
The maximum values of the free-field data The amplification factors in Table 2 are average

obtained in the project are compared to data values obtained by approximating the shock ..-.
* available from other experiments in Figures 6, spectra with shock specta bounds, i.e., linear

7, and 8. Data points on these plots labeled tangents to the spectra with slopes of +1, 0,
Post ESSEX Box, 21 lb, are from the experiments and -1. As an alternative to using the amplifi-
described in this report. All other data shown cation factors from Table 2, peak response
in Figures 6, 7, and 8 were taken from values, obtained from the Instructure shock
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spectra in Figures 11 through 20, could be CONCLUSIONS
scaled up to predict response in a specific 1 T rui ats v naeapliaton 1. The reduction factors given in Table 1
alaocan be used to predict peak instructure motions

Peak values of acceleration at various from the free-field shock spectra. If the
locations within the structure for tests at free-field shock spectra are not available, •
ranges of 6, 8, and 10 feet are shown in they can be approximated from the maxima ground ).*, .

, Figure 21. There is very little attenuation of motions by the method given in Reference 2.
the horizontal acceleration across the floor. -
However, vertical acceleration tends to peak 2. The amplification factors given in
near the leading edge of the structure. Table 2 can be used to estimate peak motions of

instructure equipment. Alternatively, the
From the shock spectra for Instructure instructure shock spectra given in Figures 11

horizontal motion in Figure 22, it appears that through 20 can be scaled to predict peak motion .
most of the variation in horizontal motion is for instructure equipment.
at relatively high frequencies. However, the
shock spectra for the instructure vertical 3. Instructure attenuation of peak hori-
motion in Figure 23 indicate that considerable zontal acceleration across the floor of the
variations in the vertical accelerations occur structure is negligible. The peak vertical " -
at relatively low frequencies. Therefore, the floor acceleration has very little attenuation
reduction factors in Table 1 should be modified after an initial maximum near the leading edge .
somewhat when predicting vertical acceleration of the structure. •
near the leading edge of the structure. The I
amount of modification depends on the range, REFERENCES
however, Figure 21 can be used as a guide in
predicting vertical accelerations near the I. J. L. Drake; "Ground Shock Threat to Buried
leading edge of a structure provided the weapon- Structures from Conventional Weapons;" presented
structure system being investigated can be at The Protective Design Symposium, 22-23 Sep-
scaled up from the weapon-structure system in tember 1975, NATO, Brussels, Belgium.
this report.

2. Cyril M. Harris and Charles E. Crede; Shock
and Vibration Handbook Part I: Vibration of
Structures Induced by Ground Motion; N. M.

Newmark and W. J. Hall, 1976.

TABLE 1 0

FREE-FIELD SHOCK SPECTRA REDUCTION FACTORS

Damping Structure Acceleration Velocity Displacement In

VERTICAL

0% 3C .18 .056 .064 "0--

3D .036 .042 .031

5% 3C .20 .069 .070
3D .040 .050 .036 A

10% 3C ,20 .056 .081 ....
3D .043 .062 .041

HORIZONTAL

0% 3C .10 .22 .24
3D .074 .12 .14

5% 3C .11 .26 .27
3D .081 .15 .092

-; 10% 3C .11 .32 .31
3D .087 .18 .18 ...
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TABLE 2
INSTRUCTURE AMPLIFICATION FACTORS

Damping___ Structure Acceleration Velocity Displacement

VERTICAL Srcue Aclrto ___ ____

0% 3C 1.0 2.6 2.5.

3D 1.9 3.1 2.8

5% 3C 0.78 1.9 2.0
3D 1.4 2.2 2.2

10% 3C 0.65 1.7 1.6 -

3D 1.3 1.7 1.8

BHORIZONTAL

0% 3C 1.5 1.5 1.3
3D 1.8 1.9 1.5

V A5% 3C 1.2 1.3 1.0
3D 1.5 1.6 1.1

10% 3C 1.0 1.1 0.84
3D 1.3 1.4 1.0

%
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CRACK PATTERN OF AN UNDERGROUND, CYLINDRICAL, . .
REINFORCE D-CONCRETE STRUCTURE UNDER AN AXIAL BLAST LOADING

L.C. Lee and M.S. Aghabian -
Agbabian Associates

El Segundo, California

A blast type of loading is applied to the top of an underground, cylindri-
cal, re inforced- concrete structure. The problem is analyzed by the
finite element step-by-step integration method, incorporating a variable
modulus model for the soil rnd a nonlinear composite model for the0
reinforced concrete. Results of calculations show the step-by-step

.~ ~,development of a crack pattern as the blast load is propagated down
through the structure. This crack pattern is shown to be related to the
sequence of development of the deformation, the displacement, and the
stress, both In the structure and in the surrounding soil. Differences

%-ef in cracking patterns in the structure due to dynamic and quasi-static
loads are noted. Because of the difference between wave speeds in the ___

concrete and the soil, the structure is initially unconfined by the suir-
rounding soil. This uncoupling of the soil/structure interaction proves
to be a powerful mechanism in generating cracks. In contrast, no such *'

uncoupling takes place when the pressure is applied statically. It Is
shown that equivalent static analyses generate stress responses that are

- . significantly lower than those obtained for a dynamic environment. '

INTRODUCTION developments in finite element techniques, numer-
ical solutions of interaction problems have become .%

* ,Two approaches are generally used to ana- very effective and highly reliable.
lyze the response of underground reinforced-
concrete structures subjected to air-blast loading: This paper reports the results of a refined .. ~*
(1) the testing of scaled or prototype structures finite element analysis employing a reinforced-
under air-blast simulators and (2) mathematical concrete model capable of cracking. A "crack- .6

modeling and modern numerical analysis tech- pattern analysis" gives detailed descriptions of
niques. The major drawback of the experimental the progressive crack development in the con-

-rapproach is that, except for small-scale testing, crete and the dynamic response characteristics . ,

only a limited number of tests can be econom- of the structure and the soil media.
* ically performed. The mathematical approach is

generally much more economical, and the analy-
sia can be repeated with relatively little effort if
the test configuration is changed. The major DESCRIPTION OF THE PROBLEM
drawback of the mathematical approach is that its
accuracy is limited by uncertainties in the defini- The soil/structure interaction problem
tion of material properties and in the modeling of selected for the demonstration of the crack analy-

*the boundary conditions. sis is an embedded, cylindrical, reinforced-
concrete structure subjected to a blast type of

Although both model tests and numerical loading applied uniformly from overhead, as .- ,

*analyses are performed for some protective types shown in Fig. 1. The three sections of this '

-of structures, most soil/structure interaction underground structure are shown in Fig. 2. The '.-*"

problems rely on the accuracy of numerical bottom section, called the lower structure, is a
analyses for insight into the dynamic responses reinforced -concrete tube approximately 27.5 ft ''

of both the soil and the structure. Using recent long with an open top and a closed, 2-ft-thick

.4. 89
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* bottom. The top section, called the upper struc- .0'
ture, is a broader, heavier, reinforced-concrete DISK COVER
cylinder with a massive top portion, slender D.'K'VER 0

walls, and a thick-ring footing at the bottom. _11.74

The neck of the lower structure fits inside the

ring of the upper structure with about a 3-in. ._ ,..

clearance between their surfaces. The third STRUCTURE

section is a circular reinforced-concrete disk - 12.51 . 13' 16.241
cover countersunk into the upper structure, flush
with the top plane. 7---1.5'-- 98' "

SR

.', ~~LOWER- / ,"'""

STRUCTURE

26.0''

.

Fig. 2 - Underground structure

REFRACTION ESTIMATED
DEPTH, MATERIAL LAYER SEISMIC ARRIVAL

FT DESCRIPTION NUMBER VELOCITY, TIME OF WAVE
FPS FRONT, SEC

S. .: .

DRY CLAY 1 1.600 ,

8.__ -7-f0.05%
-j . 15 WET CLAY 2 4.300 _--..

6.24 -0.00T2
20 LIMESTONE 3 18,000 A

-'.-v/, ,v.,//, /, INTER- i.L'•,
-2.52

Fig. 1 - Site of underground reinforced-concrete 2LIESTONE 801

structure subjected to overhead blast 3D AND SHALE

loading LIMESTON-0.0l. 35._" /// LIETN 5 ,0 0.012 .".. .-

SHALE 6 6.000 -e" '_'"

The entire structure is embedded in a geo- 41.4 -0.0103
logical site, with the top of the upper structure COAL 1 2,-00-15
and the cover disk level with the ground surface.
The upper structure itself rests directly on top 50 S

of the relatively hard limestone layer (Layer 3) 51.?7T4 -- _/ -- 0.0125
and is surrounded by a soft backfill material. 55
This material extends above the limestone layer, LIMESTONE 9 10,900

and to a radial distance of 12.3 ft from the 660. S_ -0.0133_o
center line of the upper structure. The idealized .. ,

free-field geological profile of the test site Is
shown in Fig. 3. Fig. 3 - Free-field geological profile -

90
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Finite Element Idealization of the Soil/Structure -ACKFILL 4.924'
Interaction Problem 0 "" -

A nonlinear axisymmetric finite element - - CLAY
computer code called FEDRC was used for the 10:
soil/structure interaction analysis. The approxi- ---- T CLAY
mate equation of motion applied in FEDRC at 15 ,
time t has the following form: I

Mii + K dut P F (1) *, ..

in which 25- INTERBEDDED- |lll11 ILIMESTONE

M = Nodal point masses U 30 i I f I

- -- LIMESTONEi t = Nodal point accelerations at time t

K : Global stiffness at time t-At
t-At.%llll I I ,I''. ..

dut = Generalized incremental displacements 45- COAL

between time t-At and t -- SHALE

%Pt= Externally applied forces at time t 55-t - -1111111- - LIMESTONE

F tAt= Internal resisting forces at time t-At 60 d:

The step-by-step integration of Eq. (1) is carried 0 5 10 15 2 25 ' 35
out using the so-called implicit scheme, which DISTANCE, FT
incorporates the Wilson 0-method for numerical
stability. A special feature of this code is a Fig. 4 - Finite element idealization of the site
composite reinforced-concrete model that takes structure v

into account such important characteristics as the
cracking and crushing of concrete, the yielding
of steel, and the debonding and rebonding between g
the concrete and steel. A general description of Material Modeling
the FEDRC code can be found in [11 and (2).

A hysteretic, piecewise linear stress/strain

The finite element idealization of the struc- relationship with a Mohr-Coulomb failure envelope
* ture and the surrounding "soil island," including is used to model the nine geological soil layers.

the backfill region, Is shown in Fig. 4. In this However, to use this model for the backfill mate-
model, the bodies of the structure and the soil rials, where a sharp variation in the moduli
are represented by axisymmetric isoparametric occurs in the high-strain range, may In some
elements. In addition, special slip elements are circumstances lead to numerical instabilities. %
used to simulate the slippage between two con- To circumvent this difficulty, the piecewise linear '

• tiguous bodies. Mathematical formulations of loading curve is replaced by a single continuous - '
*:: these elements are given in App. A. polynomial curve. All ten soil models are *. ...

assumed to be Isotropic and homogeneous, with
* The boundary conditions specify that the constant Poisson ratios.

vertical boundaries a-b, c-d, and e-f in Fig. 4 . --. ]
are restrained from all horizontal motion. On The composite reinforced concrete is mod-
the other hand, the bottom boundary d-c is eled as two component materials (3). The plain
quieted by a technique that eliminates unwanted concrete is treated as an orthotropic nonlinear ,
reflection originating from this artificial bound- material, whereas the steel is treated as a lin-

" ary, as described in the User's Guide [11.* A early elastic, perfectly plastic material. A
detailed discussion of the boundary conditions is combination of these two component materials
given in App. B. yields an orthotropic, variable modulus continuum ' ,

The quiet boundary technique is formulated for 90-deg impingement. The two-dimensional nature of the wave props- .,...'

gation problem imposes certain restrictions on the validity of using such techniques. In this analysis, reflections h

from the bottom would have arrived at the upper structure in about 15 msec. Any possible errors due to the,.' . -..
assumption of 90-deg impingement will not affect the significant part of the dynamic response, which occurs in the %
first 15 msec (see App. B). O
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that takes into account the following effects known 40
to exist in the reinforced concrete:

TOTAL NUMBER

a. Behavior of steel reinforcement, which 0 CRACKS
includes the elasticity of steel NUMBER OF u CONICAL f "

b. Debonding between steel and concrete CRACKS ..,/.7; ~NUBER O'-"-•
c. Dowel action ERADIAL -

Z10- RADIAL

d. Tensile cracking and rebonding in
concrete 0 01

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

e. Crushing of concrete in compression NORMALIZED STATIC LOADP .S-

f. Anisotropy in concrete Fig. 5 - Number of cracks vs. static load "

Mathematical formulation of the steel and
concrete materials and the slip elements are
given in App. C. AXISOF '"AXIS O

SYMMETRY ." * .Z 
"

RESULTS OF ANALYSES

Two separate calculations were performed I
using essentially the same finite element mesh. RADIAL
In the static calculations, a uniform load was CRACK
applied to the top boundary in steps of small load % '46.

* increments; in the dynamic calculations, a blast I'.-2,

load was applied to the same boundary. The
restart capability of the FEDRC code permits .. R

, both calculations to terminate at any predeter- CONICAL %
mined step and to continue after the results have CRACK

been examined at this intermediate step. The
static calculation was performed to provide a P %

reference for selecting a dynamic load amplitude '-A _
and to help isolate some of the dynamic effects
characteristic of the present problem. Fig. 6 - Conical and radial cracks

Static Analysis and Geometry of Cracks giving the stress components in the cylindrical
coordinate system, the orientation of the crack ., ..

Due to the relatively high degree of non- surface (that is, the orientation where maximum %'-, .-* .
linearity of the backfill material, the load incre- tension occurs) can be calculated by the applica- .,...
ment in the static calculation was selected such tion of Mohr circles. Since a crack is formed

that the entire static calculation was accomplished when the tensile stress across a surface within %-V
in 29 steps. Gravity loading was also applied an element exceeds a certain limit, conical
during the first two steps of loading. The results cracks are generally the result of excessive
of the static analysis are summarized in Figs. 5 bending and/or excessive axial load.
to 9. Fig. 5 shows the relationship between the *. . :."*
total number of cracks and the load. Cracks of the second type, radial cracks,

are developed when the hoop stress Oa exceeds

As depicted in Fig. 6, cracks that develop a certain limit in tension. In a single element .... -
inside an element can be categorized as two a radial crack produces a crack surface that •

types. The first type, conical cracks, includes appears to fall on the R-Z plane (the crack gap .

all cracks that form conical surfaces of revolu- opens in the 0-direction and propagates in the R .

tion. Hence, conical crack surfaces may range and Z directions). Theoretically, radial cracks
from a cylindrical surface at one extreme to a will develop simultaneously and uniformly in all
cross-sectional plane, at the other extreme. In circumferential directions, thereby presenting

a single element, such a crack produces a crack axisymmetry. In reality this Is seldom the case, ..--. '
surface perpendicular to the R-Z plane. By since any small imperfection may cause a radial 0

92

W % %-.
• 
.*

,,:..,;- : ,. - ......i .. .............- .... w.,.... ...: ,; .. ' w w . :.w w --in.. S : % .:

.. . . * **%qa*** ., * * ~



.%

crack to develop first in the region that includes DISK COVER DISK COVER
the imperfection. Thus the radial stresses in the
remaining "identically located" elements are
relieved, and the development of further radial
cracks is prevented. Since radial cracks are IJ UPPEO
developed as a result of the radial expansion, or TURE STRUCTURE .
bulging, of a ring section, this type of crack can
result from excessive axial compression applied
with little or no lateral confinement.

Based on these observations, it can be con- j _"
cluded that the combination of the crack load
history and the crack distribution plots together l
provide some qualitative information on the over- .
all distribution of stresses, as well as describing LOWER LOWER
the critically stressed areas in the structure. /STRUCTURE STRUCTURE .-.

Fig. 5 shows that the first conical crack -
occurs when the normalized applied load ps
reaches about 0.37, and no radial cracks are
developed until the load reaches 0.63. From j-

0.63 to the maximum applied load of 1, both .. N %

conical cracks and radial cracks increase at an _.
essentially steady rate. Consequently, the num-
ber of radial cracks developed remains substan- o RADIAL CRACK
tially below that of the conical cracks at the end
of the calculation. The intensity corresponding M CONICAL CRACK

to the maximum normalized load ps = 1 is
selected such that significant crack activities can
be detected in the structure. It also provides a
reference for selecting a peak dynamic load -
intensity. It has no other physical significance. (a) P= 0.758 (b) P8 = -
Experimental data are generally needed for a
further definition of ps.

Fig. 7 - Crack zones under static load
The zones in which cracks are developed

* and the orientation of these cracks are shown at , ,
ps = 0, 758 (Fig. 71a]), which approximately ,
corresponds to the peak dynamic load, and at the ,% .."" maximum load P5 = 1 (Fig. 7[b]). It is obvious .i L'

in both plots that the conical cracks outnumber . _ "
the radial cracks. All of the radial cracks are .. A.E
found in the bottom part of the disk cover and . -' I ",. ="- -
the upper part of the lower structure. The con- : - I "J"

ical cracks are concentrated in essentially the " ,
same regions and also in the footing of the upper I .?
structure. -,-

One of the most prominent characteristics
of the static analysis is the fact that the develop- .

1 .ment of the radial cracks trails that of the conical
cracks, both in the initiation time and the number. '
(As will be shown later in the dynamic analysis, ,..* .
this characteristic demonstrates a very interesting
distinction between the static and the dynamic (a) p= 0.368 (b) Ps 0.632 (c) Ps = I

results.) Such an outcome can be understood in 0 STRUCTURE "
part by examining the formation of plastic zones * PLASTIC ZON -%
in the free-field media. Fig. 8(a) shows the .. ,N",.
extent of plastic zones (dark area) at ps = 0.368. % % -
Fig. 8(b) shows the plastic zone at ps = 0.632, Fig. 8 - Plastic zones in the surrounding soil ..
when the first radial crack is registered. Finally, media under static load .
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' Fig. 8(c) shows the plastic zones at the maximum Dynamic Analysis
. load of ps = 1. It can be seen that at the onset
" of the cracking there is an extensive plastic The input pressure pulse applied uniformly
*region surrounding the upper structure. Since to the top boundary of the finite element mesh is

the top soil layers exhibit very little strain har- shown in Fig. 10. This pulse has a rise time
dening (Table 1, App. C), they behave essentially of 1.5 msec, a duration of 22 msec, and a maxi-
like compressible fluids after the yield point is mum amplitude equivalent to about 0.758 ps. The
reached. Therefore, the lateral pressures shape and the amplitude of the pulse was chosen

" exerted on the structure by these materials are somewhat arbitrarily to generate significant crack
approximately equal to the applied pressure from activity in the structure.

* the top. These lateral pressures prevent the
structure from undergoing excessive bulging. As The step-by-step integration routine was
a result, no radial cracks are developed until the carried out following the schedule shown in
applied load is increased to such a level that the Fig. 10. Because of the potential for instability

* lateral confining pressure is overcome, caused by some highly nonlinear soil properties,
caution was exercised in the choice of the time-

Fig. 9 shows the vertical deflections at step sizes; and the restart capability was used to
" various locations in the structure. Although safeguard against the occurrence of instability.
* there is no flattening of the curves, which could

be interpreted as the sudden collapsing of the Because of the difference between the load-
structure, the deflection at nodes in the upper Ing and the unloading characteristics in all mate-

, structure increases at a faster rate than the rial models, some numerical oscillations may be
increase of the applied load; whereas the deflec- induced as a result of the different loading and
tion curve corresponding to the node at the unloading stiffnesses. To suppress these unwanted " .'.
bottom section of the lower structure indicates oscillations, some stiffness-proportional damping e:*
the reverse trend. The transition appears to was introduced in the numerical integration. This
occur at the bottom of the upper structure type of damping can be related to critical damping 0

(Node 438, Fig. 9), where an approximately ratios by the following formula %
linear load-deflection curve is observed. This

W can be explained by the fact that the upper struc- (2)
ture rests directly on a very stiff limestone in which
layer that provides a relatively firm foundation, Ct d g on g
which allows the upper structure to bulge in \ = Critical damping ratio corresponding to

addition to siking downward. The load- the nth node

deflection curve at the bottom structure merely p = Damping constant
reflects the stiffening effects of the soil layers
below the level of the bottom of the structure. 

w = Natural period of the nth node 
" % -

1.0C
NODE 186 %

n" NODE 328 NOE 3 C. .' P-NODE ..II
0.8N NODE 15

N 0.6 NNOE 7681D6 NOm ,

NODE 768W 43aL 0.6- NODE 15

S0.2-

" NENODE 31
0.4-

C0  -0.1 -0.2 -03 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0

VERTICAL DEFLECTION, IN. 1POSITIVE UPWARD) %

Fig. 9 -Load deflection curves in the structure for static loading
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0.01 0.04 0.05
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50 AT
0.02 MSEC TIME STEP SCHEDULE

Fig. 10 - Input pressure pulse for dynamic calculation

In the present calculation, P is taken equal similar to that in the static case. Using the
to 0.00005 and is applied uniformly to all mate- terminology previously introduced, Fig. 11 shows
rials of the mesh throughout the duration of the separately the time histories of the number of
calculation. When this value of p is used, conical cracks, the number of radial cracks, and
Eq. (2) yields 2% critical damping when the the total number of cracks developed in the struc-
natural frequency f (= un/2r) is taken to equal ture. It is of interest to note that prior to about
100 Hz. 8 msec the radial cracks lead both In the time of

crack initiation and the number of cracks devel-
oped. After about 8 msec the number of conical

Crack Formation cracks overtakes that of the radial cracks; and
after about 13.5 msec, the ncrease in the num-

The study of the formation of cracks in the ber of radial cracks practically ceases. However,
dynamic analysis is carried out in a manner the formation of conical cracks continues at a '1"

:,__________________substantial rate until about t = 16 msec. It can : .'
SI I - also be observed in Fig. 11 that there is a tem-

300- porary reduction of the rate of increase for both
280 types of cracks between approximately t =5 msec _
260- and t 10.5 msec.'p.
240-
220 Figs. 12(a) to 12(c) show the progressive 1 !

development of crack zones at three different -.

TOTAL CRACK times, namely, t = 3.5 msec, t = 7.3 msec, and . .
ISO- 18- t = 14.3 msec, respectively. At early time

160 - t = 3.5 msec (Fig. 12(a)), radial cracks are
M10 CONICAL CRACKS/" formed in the bottom side of the disk cover, and

the middle portion of the upper structure. Con-
10 . ........-- ical cracks are formed in the bottom side of the

RADIAL'CRAC"S cover and in the shear region In the upper part .-7],.-. - w_-&0= "' RA0IAL CRACKS
of the upper structure, because of bending and

0 .shear, respectively.

40 0

2 At 7.3 msec (Fig. 121b) radial cracks
0 2 4 6 10 2 1 16 1 propagate downward toward the lower part of the•-- 2 4 6 81 0 IL 12 14 16 111 2

TIME, MSEC upper structure. Numerous new conical cracks
are also formed, extending the crack zone
established in the earlier times. In addition, -

Fig. 11 - Crack time history in the dynamic some nearly vertical conical cracks are formed
calculation in the upper structure wall. The generation of
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0%
/DI SK COVER /DISK COVER /DISK COVER shear. It is therefore expected that only bending

% cracks will be found in the lower structure. -.

The different stages of crack development sup- 
port the observation that, owing to the difference

SUCTU in wave speed, the applied pressure propagatesSTUCUR STRUCUR STRUCTUR
downward through the structure much faster than
through the surrounding soil. Because the footing
of the upper structure rested directly on a rela-

* ' tively hard limestone layer, significant vertical
stresses were developed in portions of the upper
structure while the surrounding soil was still -

relatively unstressed.

LOWER LOWER LOWER
* STRUCTURE STRUCTURE STRUCTURE The slow buildup of soil stresses is demon-

strated by Figs. 13(a), (b), and (c), where the
plastic zones in the surrounding soil regions are
shown at three different times. In contrast to
those of the static case (Figs. 8[a) to 8[c]), plas-

* RADIAL tic zones did not develop in the adjacent soil O
CRACK regions under dynamic loading until very late .

\ CONICAL times. The absence of lateral soil pressure at .
CRACK early times thus permitted the upper structure h -

to bulge, i.e., to swell or expand radially,
forming radial cracks in the process. As the od-" '",

axial load increased, spalling cracks also devel-
oped in the upper structure wall region. This

(a) t 3.5 msec (b) t 7.3 msec (c) t 14.3 msec was followed by the lateral pressure buildup as .-

e the peak overpressure propagated through the -

Fig, 12 - Crack zones under dynamic load soil. This downward propagating lateral pres-
sure caused bending cracks to develop and, as
shall be seen later, at the same time applied

these spalling types of cracks indicates that the an inward crushing load to the upper structure
wall experiences predominantly vertical loads wall that exceeded the compressive strength of

.* with very little bending and lateral pressure, the concrete. Finally, the cracking activity in
" This is probably owing to the fact that the upper the top and the wall portions of the upper struc-
* structure footing rests on a relatively hard lime- ture subsided after the peak of the overpressure

stone layer. This stiff layer provides a firm
foundation so that high vertical compressive
stresses can be developed in the wall of the 0-•-"
upper structure. --.

At t = 14.3 msec (Fig. 12[c]) the radial j."

cracks have engulfed approximately two-thirds- ,
• of the footing of the upper structure. They also

have propagated in the outer bottom portion of .-- .

the disk cover. Of particular interest is the
*formation of some nearly horizontal cracks along
. the outside and the inside of the upper structure

wall. The development of these horizontal cracks
indicates that the structure is subjected to sig-

*- nificant bending moment. This bending moment
is probably introduced by the lateral pressure

4 | exerted through the surrounding soil. Only a
few radial cracks are formed in the lower struc- (a) t 4.99 maec (b) t A 6.01 msec (c) t 16.01 msec
ture. However, nearly horizontal conical cracks D STRUCTURE
are formed in the entire length of the lower a PLASTIC ZONE ,

structure wall. Since the applied pressure is
exerted on the lower structure only through the
surrounding soil, the principal loading transmitted Fig. 13 - Plastic zone in the surrounding soil
from the soil is through radial compression and media under dynamic load
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propagated through the soil. The rate of crack Those regions that undergo radial expansions coin-
- formation started to climb again as new cracks cide with the zone where radial cracks initiated

developed in the footing and the lower structure and propagated (Fig. 12[a)). The fact that the
regions. Cracks generated in the footing appear vertical load has been transmitted to the bottom
to have been caused by both bulging and bending, of the wall is shown by the relative vertical dis-
while those in the lower structure appear placement between the footing and the top of the
primarily due to bending. lower structure, and also the sinking of the wall -'

into the footing.

Defbr-ed Shares At t = 14.31 msec (Fig. 14(ab]), which uses
one-fifth the displacement exaggeration used pre- 'p

The deformed shapes of the upper structure viously, the plot shows significant inward com-

computeO for two instances are plotted in pression of the cylindrical wall. As the amplitude

Figs. 14(a) and 14(b). Because of differences in of the applied overpressure decreases after the a'

the degree of deformation, the early time response passage of the peak value, the bending of the top

is shown on a scale with a five-fold difference portion of the upper structure also diminishes. ". ..

from the late-time response, for easier visibility The lateral soil pressure on these parts of the "

of the lesser deformation. The deformed upper structure has replaced the direct overpressure as

structure, shown at t = 3.53 msec, represents the major driving force. The weakest portion in

the configuration when the peak of the applied load the structure to resist this combined axial com-

propagated through the concrete has already passed pression and radially inward pressure is the

the footings of the upper structure, whereas the upper structural wall, as shown in this deformed

same load propagated through the free field has plot. a...

only passed a depth corresponding to the midheight %
of the upper structure. Z.aeno.

Disp lacemen s

T Displacement time histories for selected
free-field and structural locations are discussed " "
below. The vertical displacements for these
vertically aligned nodal points in the free field . .
are superimposed in Fig. 15. Node 4 is located
at the ground surface, Node 223 is located in
the middle of the top (dry clay) layer, and S
Node 523 is located In the middle of the lime-
stone layer. This comparison shows the amount

DISPLACEMENT DISPLACEMENT 
, .'....

t'.+CALE IN. SCALE, IN. .,"

-0.8-

(a) t = 3.53 msec (b) t = 14.31 msec . a .- ,"

Fig. 14 - Deformed shapes of the upper structure "V..

in the dynamic calculation

-4.0-

At this time the deformation is concentrated _ NODE4 -- GROU, O SURFACE .

in the top portion of the structure. The disk ----- NDE223 -- MIDDLEOF DRYCLAY LAYER q5 FT)
cover is significantly deformed, primarily due to --- NODE 523-- MIDDLE OF LIMESTONE LAYER (1&34 FTI
bending. The massive top portion appears to have "56 1 A A

0 4 8 12 16 M0 24 28 9
undergone a combination of shear and bending TIME. MSEC
deformation that causes the bottom part to expand
radially where it joins the cylinder wall, and the
top part to move inward. The wall is vertically Fig. 15 - Vertical displacement comparison for
compressed and Is slightly expanded at the top. three free-field locations
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of attenuation, as well as the smearing or broad- 0.24,
ni of the peak as the target location moves JNODE 232 TOP OF CYLINDER WALL OF UPPERendo tepaa ns STRUCTURE (4. 75 FT)

dowwrd.. .....--- NODE 414 -- BASE O LIPPER STRUCTURE WALL

/-,(14.75 FT)

At '.he ground surface, the displacement
reaches a peak value of about 4.52 in. at appro-
approximately 13.8 msec before a rebound occurs R "K.'.

and the ground begins to move upward. The o"
peak occurs at approximately the time when the "
reflection from the top interface of the limestone M-.0- ,e -.," •

layer (Layer 3, Fig. 3) first reaches the ground -"
surface. The rate of the upward motion indicates 5;
that the reflection is a strong one. -0.16 -

At Node 223 the motion is characterized by %
4 8 12 16 20 24 28 32

a blunt peak region occurring approximately TIME, MSEC
between 11 and 16.6 msec. In this broadened
peak region, a slowly but continuously increasing
trend in displacement is observed. Since an Fig. 16 - Horizontal displacement at two locations 't
idealized per' A reflection without attenuation in the upper structure
would have produced a horizontal plateau region,
this increase indicates that the reflected wave .'- mode. This can be explained by the fact that .-"from the limestone interface is slightly weaker moe hi a b x .ndbytefatta
tham the ietial inewave At wk the outward motion of the cylinder wall is pri-
thmaly caused by a moment and a radial shear -. -.
16.6 msec the unloading wave, initiated when the force applied to the top end of the cylinder, S,'

reflected wave reached the surface, arrives. This whereas the inward motion of the cylinder wall

third pulse of upward velocity is sufficient to isedeat the lara pressure ran ed byth
is due to the lateral pressure transmitted by theroi

overcome the downward velocity produced by a
-. ~combination of the original pulse and the reflec- % ..

ted pulse originated from the limestone interface. Finally, Fig. 17 shows the vertical dis-

~~~placement time histories of Node 263 located .. l
At Node 523, the amplitude of the particle pemnt tim o ie of Node 23locatd

velocity is strongly reduced. This reduction near the top of the upper structure wall and

reflects the increase in material impedance and Node 523 at the middle of the limestone layer in 9
the free field. The curve corresponding to -- \ ~

the strong reflection that occurs at the interface the 263 shows aneary dorrd t
between the clay and the limestone. At problem Node 263 shows an early downward peak at Is f
"aapproximately 7.8 msec. This is followed by a
.termination, slightly before peak displacement is brief upward motion before moving downward .

]

expected, the displacement at Node 523 is about
0.8 in., or 18% of the peak value attained at the again at about 12.4 msec. The second downward..

surface. This rather strong peak attenuation is
not out of line when the ten-fold impedance (pc) 0.2 -t.

mismatch at the clay limestone interface is NODE 263 NEAR TOP OF UPPER STRUCTURE WALLI. VT)
Sconsidered - MODEZ-- MIDDLE O LIMESTONE LAYER (1.34 M".cnidrd 0. , ....;

Fig. 16 shows the horizontal displacement-.,.
of Node 232 located at the top of the upper struc- 7m

ture wall, superimposed on that of Node 414 -_

located at the foot of the same wall. The dis- 2 -0.4- _m_

placement at Node 232 is outward up to about IN;

7.3 msec. This outward motion has been shown ".,-.
to be primarily responsible for the development -6

of radial cracks in the upper structure. Inward
movement begins at about 5 msec with net inward -0..8

displacement after about 7.3 msec. At Node 414 •

the same outward-inward sequence of motion is -i. 000
_0 4 a 12 16 20 24 28 32

preceded by a period of small-amplitude Inward TIME, MSEC

displacement up to about 11 msec. A major dif-
ference in the characters of the two curves Is '

the amplitude of the outward motion. The posi- Fig. 17 - Vertical displacement comparison for , .. ,'.,

tive peak (outward motion) displacement of the locations in upper structure and ., -
bottom node Is only about 20% of that of the top free field
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motion is much stronger and is still increasing At Element 346 near the middepth of the second
at the end of the calculation. This curve is (wet clay) layer, the first peak is amplified
superimposed on the free-field displacement time approximately 1.5 times, and the second peak
history representing roughly the displacement at 1. 3 times from the previous values because of
the base of the upper structure. The first peak, the impedance mismatch and the superposition of
which is completely absent in the free field, is the primary and reflected waves. The two peaks .

probably due to wave propagating in the structure, are now closer together because this target point

This is followed by an upward rebound motion as is now closer to the reflecting interface.
the wave is reflected from the hard limestone

* layer. The main motion, however, appears to be Vertical stress time histories for three .
caused by waves propagating through the sur elements at the top of the upper structure wall
rounding soil that result in the downward move- are shown in Fig. 19. This comparison shows
ment of the supporting limestone layer. The that prior to about 6 msec the section undergoes - - ,
history of crack development (Fig. 11) indicates a buildup in both compression and bending. This
that most cracks are initiated prior to 16 msec. is followed by a brief period of unloading until
Therefore, the strong vertical motion occurring the middle element cracks in tension at 9 msec.
after this time appears mainly to be composed In the second stage the inner element reloads
of rigid body motion, again in compression while the middle and the

outer element both undergo tension, and conse-
quently the crack developed in Element 261

Stresses remains open. In view of the previous discus-
sions on cracks and displacements, it is obvious

Selected stress plots at various free field that the first state of loading is due primarily to %
and structural locations are presented and dis- the directly applied pressure loading. As the b. . .

cussed in this section. Vertical stress time vertical load decays, the horizontal load exerted
histories for three free-field locations are super- by the soil increases. The inward bending of the
imposed in Fig. 18. These stresses are nor- cylindrical wall section again introduces new
malized based on the maximum dynamic load buildup of bending moment at this section. How-
amplitude pd. At Element 4, which is located at ever, there is not enough compressive load at
the ground surface, the time history very closely this state to prevent the development of tension

- follows the input pressure pulse (Fig. 10). At for the two outside elements.
Element 205 near the middepth of the top (dry
clay) layer, the curve has a first peak that is
nearly identical to the peak of the surface ele- 2
ment. A second peak has an amplitude com-
parable to the first peak. The arrival time of
this peak (12.6 msec) can be readily identified
with that of the wave reflected from the interface 0
between the clay and the hard limestone layers. ... :

.-2
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156 ELEMNT261 15.48 FTI
--ELEMENT 26217

I, 2-D 24 28-I. ~ ~~TIME, MSEC"."":]

-.- E A -- .oGROUND SURFACE
-0.28 FT)-

-.---- ELEMNT05-- MIDDLEOF DRYCLAY Fig. 19 - Vertical stress comparisons across the
1 4 LAYER (4.47 FT) top of the upper structure wall

-ELEMENT 46 MIDLEOFWET CLAY

LAYER Q1.0 FT)
- 4 8 12 16 2 24 28 32 %

TIME. MSEC Fig. 20 presents a comparison of vertical %
stresses in the elements across a section at .%.

approximately the midheight of the upper struc-
Fig. 18 - Vertical stress comparison for three ture wall. The vertical stresses show essentially

free-field locations the same sequence of events seen in Fig. 19 for

". . . ."" "__ '' P'- I _FW " . WP W' w Wp Wp q P q P W P -.t

-. - ...- .. ... . . x..-* _ ,- _ . 5
".'me,,"'.'•.'.- ,. ~. ."...•....d..... ... • ....... ............ . %%%".,•",". "



7.. J.

the top of the wall section. A noticeable differ- 1 ELEMNENT 261 - TOP Of CYLINDER WALL
ence is that the first compressive peaks in E 5. FT)
Fig. 20 have a nearly equal amplitude. This 0.5 ---- ELEMENT 312-- MID-HEIGHIT OF CYLINDER WALL -,
rather uniform compressive stress distribution 1s98 FT) •UM, 2o1

indicates that prior to about 9 msec, the bending 0 WNW.

moment at the midheight section is small com-
pared to that at the top. This observation is
supported by the deformed mesh plots. In -0.5-
Fig. 14(a) it was shown that the massive top ..

portion of the upper structure rotates in a coun- -
terclockwise direction. Therefore, in addition to X

0transmitting the vertical overpressure, it also Z
transmits a counterclockwise moment and an out- -1.5
ward shear force to the top section of the
cylindrical wall. -2.0-.

07.- o.I -'z a. L 2
0 4 0 12 16 20 24 2

'a TIME, MSEC

-0.5 , Fig. 21- Radial stresses in the upper

'"i O -Lstructure wall ,

e under tension until a large compression generated
1 -. 0- 1from the loading in the surrounding soil develops.

The strong compression quickly crushes both sec-

S -2.5 _ tions and they remain crushed until near the end

-3.0 ELEMENT 311 of the calculation. "
ELEMENT 312 8.98 FT)

--- ElMENT 313 
.-45rFT SUMMARY AND CONCLUSIONS

0 4 s 12 16 20 24 28 M The finite element analysis reported in this 5

paper illustrates some of the recent results of a
very important area of development in solving

Fig. 20 - Vertical stress comparisons across a soil/structure interaction problems. To improve
mid-height section of the upper the performance of a finite-element analysis, . -

structure wall more refined material models are used that .- - a.

account for a number of aspects of the material
behavior. One of the main features of this analy-

Since the bending moment induced by the sis Is the inclusion of the composite reinforced- ,-
applied end-moment and by the end shear-force concrete material model reported in [3]. Based
are significant only within a small local region on experimental data, this model is constructed

*:" near the end, and their effects appear to be self- to predict macroscopic cracking and crushing in ". I

canceling, the major loading in the lower part of the reinforced concrete. Other important char-- .,
- the cylinder is from the uniform vertical corn- acteristics taken into account are the debonding

pression. A second noticeable difference is and rebonding between concrete and steel, the
observed in the second stage of loading caused by dowel action, and the inelasticity in the reinforce-- - _
the inward compression of the sofl. The distri- ment. A crack analysis demonstrates the crack ..-
bution of stresses across the wall thickness indi- growth quantitatively as the loading proceeds.

-=: cates that the sign of the moment at the midheight The results show a distinct pattern that facilitates .,,.-h,
is reversed from that at the top of the wall. The the isolation of the dynamic interaction effects. ..
sign of the bending moment represented by these Strong correlations are also found between crack-
plots corresponds to the case of a built-in ing and the deformation of the structure, as well
cylinder loaded externally by radial compression. as in the displacement and the stress buildups in

both the structure and the soil. The main results 7 1
Fig. 21 shows the representative radial of the crack analysis can be summarized as

stress time histories at the top and the midheight follows:
of the upper-structure wall. Both curves indicate

" almost identical behavior patterns. The two sec- a. The main feature of the crack analysis
tions first crack radially in tension and stay is the cla~sfication of all cracks into

100

40 e

% - . a -  - S a -a

~1''N~... *L %I...........................................



two groups: those associated with the for SAMSO under Contract F04701-69-C-0209.
bulging mode of deformation, called The authors would like to express sincere grati-
"radial" cracks; and those associated tude to Capt. J. Kaiser, project monitor at
with compressive and bending loads, SAMSO, for giving permission to publish this
called "conical" cracks. Making such paper; to Mr. L.E. Carlson, project manager at
distinctions between these two types of Agbabian Associates, for his general guidance
cracks facilitates the interpretation of throughout the entire phase of the reported work; -

results and the identification of criti- and to Drs. D.P. Reddy and J.W. Workman '.e
cally stressed areas in the structure, for their constructive comments in the preparation

of the original report.
b. Due to the difference between the wave

speeds in the concrete and those in the
soil media, the structure is freed REFERENCES 0
momentarily from the constraint of the
surrounding soil. Consequently, the 1. User's Guide for FEDRC Code,
first major loading the structure experi- U-7523-2-3968. Agbabian Associates,
ences is dominated by the direct over- El Segundo, CA, May 1975
head pressure. The second stage of

develops as the effect of waves 2. K.P. Chuang and J. Isenberg, A Study of
loading ihough the so f wves Implicit and Explicit Step-by-Step Integration
propagating through the soil is felt. Techniques for Finite Element Application,
This "uncoupling" of the soil/structure R-7243-5-2954. Agbabian Associates,
interaction effects proves to be a El Segundo, CA, Jun. 1973
powerful mechanism for generating
cracks, in contrast, no such uncou- 3. S.A. Adham, A.K. Bhaumik, and J. Iserherg,
pling is possible when the overhead Reinforced Concrete Constitutive Relations,
pressure is applied statically. The R-7322-3300. Agbabian Associates,
deformation of the structure is always El Segundo, CA, Jun. 1974 (AD A007-886)
"confined" by the surrounding soil

.media, thus preventing a large number 4. T.C.Y. Liu, A.H. Nilson, and F.O. Slate,-r"Biaxial Stress-Strain Relations for Con- .-
of cracks from occurring. crete," Proc., ASCE Struct. Div., Vol. 98,,%', ~No. ST5, May 1972 ",??

c. In the case studied, the blast type of
loading is a very powerful mechanism
in generating cracks. Compared to a
static loading of the same maximum APPENDIX A
amplitude, the dynamic loading shown
in Fig. 10 generates about 14 times TYPES OF TWO-DIMENSIONAL ELEMENTS
more cracks. Therefore, an "equiva-
lent" static analysis may generate .. '-.

stress responses that are significantly Axisymmetric Isoparametric Elements
lower than could occur in the dynamicTe im csp ecle
environment. The axisymmetric isoparametric element

used to model the structure and the soil is %
d. The cracking of concrete affects the depicted in Fig. 22. These elements are defined

structural behavior on two important by the shape functions that are quadratic func-
counts: (1) The concrete's loss of tions in terms of the local coordinates a and t.
ability to transmit tension in a local

* region causes the tensile load to be 4
redistributed and high tension regions r(s,t) htr1
are therefore more widespread than i=1
they would be otherwise; and (2) by
reducing the compressive strength in 4 .'..-*

06 the psteracking phase, the cracked z(s,t) = hizi.
iN_.° regions are weakened and can be more

easily crushed when the loading is (3)
reversed. 4r. ' ' . .

u(s,t) = hiui

o.' ACKNOWLEDGMENTS .

The work reported in this paper is based v(st) h 1 I

on an analysis performed by Agbabian Associates = a hivi
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e 9
Z in which r, z are the cartesian coordinates and

u, v are the velocity components. The subscript ","" *

I identifies one of the four corner nodes of the
elements. The shape coefficients hi are defined Iz.-
by

h = (1- s)( - t)

2 4

R (4)
(1 + s)(1 + t) (

Fig. 22 - Axisymmetric isoparametric continuum h 4
used in FEDRC code

h (1 - s) + t) .
4 4 -

The strain-displacement relations are
obtained by differentiating the above displacement

MEW 2 2 functions with respect to coordinates r and z. -- .
2 u Uzj From this the strain-displacement transformation

ZI 2 matrix [SI is calculated and finally the element
rj stiffness matrix [k] is derived by evaluating the

ri ... u integral

1g u rj [k] = fvoiume sTcsdv (5).

ri where C is a matrix composed of the generalized
tangent stress/strain moduli of the material. -

ELEMNT I,.

Slip Elements

UNDEFORMED STATE A special slip element is used to simulate r
the slippage between two contiguous bodies. The * - .
added degrees of freedom are introduced by
relating the displacement components at nodal ...-

points on two sides of the common interface by
Au rj- . -the following set of equations:

U uri uri ri

= u1  
AU -

• ., zi = zi zi **,", %
i2 1 (6)

Urj urj + UrjDEFORMED STATE

Z u2  u1  j
zj z

sdsThe superscripts 1 and 2 refer to the two

sides of the interface as shown in Fig. 23; i and
• R j denote the two pairs of nodal points and the two

Au's are the relative displacement components of %
R A, Z • GLOBAL COORDINATES the pair of initially coinciding nodal points. ' .
n. s - LOCAL COORDINATES .%.

The displacement field is assumed to vary %
Fig. 23 - Deformation geometry of slip element linearly along the interface. It can be defined in
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terms of the local coordinate s along the length 15 msec, the response at the foot of the upper
of the interface by the following set of equations structure will be distorted by the fictitious signals

reflected from the bottom boundary of the finite
- u = h i utr + h iUrj element mesh. To avoid these reflected signals. -

r I ri i ithe bottom boundary is "quieted" using a technique
described in [1]. This technique is intended to

uz  = hAUzi + hu (7) eliminate unwanted reflections from a boundary so

1 1 that this boundary can be considered to lie beyond
u = hu + hu the physical limits of the finite element mesh. In
r i ij the static analysis all bottom boundary nodes are
1 1 hinged to provide fixity.

in which h 1 - and h1 =(1+ S)

It is convenient to transform the relative r
displacement components into the local coordinates APPENDIX C

-*n and s which are normal to and along the direc- MATERIAL MODELS
tion of the interface. The resulting components
are:

Au = -Au sin 0 + au cos Material Model for Soils
n r z c

A r.sin j (8) The idealized material model used to repre- %
s= cos + Auz sent the nine geological soil layers exhibits a

hysteretic, piecewise linear stress/strain behavior
The element stiffness matrix of the slip and a Mohr-Coulomb-type failure envelope as

element is obtained based on the above displace- shown in Fig. 24. Property coefficients of these
ment field. nine materials based on laboratory data are . 0

shown in Table 1.

Definitions of these coefficients are givenAPPENDIX B below: .. -
BOUNDARY CONDITIONS ,Virgin Loading for 4 < 5 m j In s0

The vertical boundaries a-b, c-d, and e-f inLd fr
in Fig. 4 are rollered in the vertical direction,
that is, th,. horizontal displacement is restrained. B = 1 for 2 1
Pressure loading is applied uniformly over the (9)
top boundary a-f. Since, generally speaking, the B B2 for
motion and the deformation of the entire mesh
are predominantly vertical and are expected to
approach those of the free field a short distance G 3B(1 - 2v) (10)
away from the structure and the backfill region, 2
the approximation of rollering the outer bound
ary e-f appears to be justified. The rollering Unloading/Reloading for >
of the innermost vertical boundary a-b, c-d not .

only eliminates certain numerical singularities at B = B (11)
the axis of symmetry, but also ensures that this 1 *_*I

* boundary is the axis of symmetry. Y, ~~Yield Criteria ...--

The mesh has a total depth of 60.84 ft.
The one-way transit time across the free-field F'Y -'""
profile Is estimated to be 13.3 msec (Fig. 3). If F 1 Y 12I
the bottom boundary were Indeed free, a reflected
signal would have arrived at the vicinity of the -> (for Jl Y1 0 )
upper structure footing at about 19.1 msec. )

V Because the wave travels much faster in the con- F Y 1 0 (12)
crete, the corresponding arrival time of the 25 1
reflected signal when the wave is propagated
through the concrete is estimated to be approxi- = - 0 (for J < )
mately 11.1 msec. In reality, the initial arrival F 16 2 1 1 (o .J
time of the reflected signal probably falls some-

where in between. Therefore, after approximately F < 0 not permitted
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2 . .

(VIRGIN LOADING

MDL)8 (VON MISES
c. LIMIT) Y , '

'
,,I ' "  

1Y121 (TANGENT MODULUS)

" z B: 81 (UNLOADING/RELOADING
MODULUS) _y5

" 1 "A2 (TENSION CUTOFF) "Y
-EXCESS COMPRESSION -- -..- jl

(a) Pressure/volume change (b) Failure envelope .- -
curve

Fig. 24 - Idealized model for free-field materials ...

- '" ~~TA B L E lI' ' '

• : Properties of Free-Field Materials

Excess

~~Compression, Bulk Modulus, psi Yield Criteria. .. ,

"., blnMaerial Poisson's in. /in. YpiY2" '"" .

SNo. iDescription ft psf 1 1 2 Loading Loading Tensile Unloading Cutoff Cohesion Islope

I Dry Ciav to 110 0.4 -2.41x10
- 4 

-0.02 4.14901i04 2,657x10 4 4.1494x104 4.1494x104 10.0 100.0 -0.0033A.577

477 5 ' I
% 2 W et C la y to 130 0.4 -1.57X 10 

"  
-0.005 6.369 40 10 5 5.778X 105 6.3694x 105 6 3694x 105 30.0 1.0 -0.0033. " •

16.24 v,*% .

TABLEo.1 ..- ,...

%3 Limestone to 167 0.35 -R.3x10
" 7  

_0.005 1..2044x10 7 4.-79x106 1.2049x1 07 1.204 Ax107 4A.0 5000.0 -0.1667 .% -%

b
N  

20.44
Interbedded 20.44 rY

4 Limestone to 10 0.36 -6.4xa -0.005 1.5025xO6 8.791x0 1.5625x106 1.5625x106 76.0 500.0 -0.1

3 Limestone to 167 0.35 -9.3xl0
"7  

_0.005 .204iX07 4.L79Xo6 1.e2048x07 1.204aXi07 c0. It 5000.0 -0.1667

. 3.5.24
35.2444 444

6 shale to 155 0.3 -5.46x10
- 6 

-0.005 1.7065x106 1.13x106 1.765x106 1.7065x106 115.3 500.0 -0.0033

~41.64
7 C ' a to 90 0.41 -R.OXO

"6  
-0.005 1.25610 6 .694x0 1.25xx6 1.25x10 6 129.1 500.0 -0.103

45.24

45.24 7 7 6 7,7
.4hale to 151, 0.38 -5.86x10

- 6  
-005 1.( S l 1.13xlO

6  
1.7065x][06 1.7065x106 143.0 500.0 -0.1 ,'•'

51..74-' P - l°

- 51..74 '-7,e,9 Limestone to 167 0.35 -9.3x10
"7  

-0.005 12.048x10 4.879xt06 1.2048x107 1.2048x107 0.0 5000.0 -0.1667
60.84 %

-,Limestone-to,.60.0.3

." .* .* P * e '...-..% **... .%" .. % % % . b. ....
, A.d "hl ."" "

32.14 7 5%
Lieson t 67 0.5 43x0 0.05I200x0 .7510 l.08x0 .2401 10. 50.0 -0 16
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In these equations Virgin Loading for L s 4 0

J, = First stress invariant (all) D I+ 2 3'-
,1B =D o + Dlt+ D + D3 L (13)J2 = Second stress deviator invariant 2 o2ja3j)

- l. ~~B(1 - 2v') .-. ,'"B = Bulk modulus G = 2(1 + 2) (14) .. .

2 (1 + v)

G = Shear modulus

= Poisso's ratio (assumed to be constant) Unloading/Reloadinkr for > 4m

(1 + +)(1+)(1+ 2 3 -r z. B m  DO + DI m + D2 + Dt m  (15) . #
mn 0 1 m 2m 3 Im

_ Excess compression (negative for
compressive strains) m/3 (16):. ". m °~x(t'm) +  ay(Im) + c2(gm)]/ 1) ::..

= Time derivative of ,,..

Maximum excess compression reached 1 exp ) (17)
-"in previous load history 0R.. 0

r zand c are the three axial strains P m

- *1- exp \"B /-ll .**-'.Br B2  19 0; m +(1j
Bil- BI B2' 41' 42' Yil1l Y 12' Y 16' and Y25 e"xp'-

are empirical constants B
B =B -[B

m In~ ~

Material Model for Backfill Material - B11 exp (-( -

The idealized uniaxial-loading stress/strain (for B0 < Bn) (19)
curve for the backfill material based on labora-tory data is shown in Fig. 25. Because of aO

inue yB =Bm (or maximum B) %, potential numerical instability problem induced by B B o aiu )

the rapid variation of the constraint modulus at encountered in load history .

about 4% strain, the piecewise linear uniaxial (for B; _ Bi)
stress/strain curve is approximated by a single

continuous fourth-order polynomial curve. This %

variable modulus model represented by a single (1- 2Lu
smooth virgin-loading curve is defined by G Maximum of - B (10) ....
Eqs. (13) through (22). 2 m (1 + i) (20)

or largest G encountered in

load history

----.. TEST DATA -

-. VARIABLE MODULUS FIT

* - Yield Criteria

.-" F = Y +y j €

F." Y11 Y12J1

(for J - Y10 (21)

F=Y -
25 1 77

0 1.0 2.0 3.0 4.0 5.0COMPRESSIVE AXIAL STRAIN., PERCENT F = - _•j0 (for 1 <Y1) (22)

Fig. 25 - Uniaxial stress/strain fit for backfill
material F < 0 not permissible
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In these equations, in which

u Unloading Poisson's ratio Ec E' Tangent moduli in two orthotropic
Uc C directions

Do. D 1 , D2, 13, 40, 11*, P, and Y1 0 are
empirical constants determined from the G = Shear modulus between the ith and .
loading/unloading uniaxial stress/strain the jth orthotropic directions. .
curve and the yield criteria ""..

E = Initial tangent modulus of concrete,

All other variables are as defined in c constant for all directions (tangent
Eqs. (9) through (12). Numerical values of modulus corresponding to zero strain) ." "
the parameters used for the backfill are given
in Table 2. = Strain in the direction considered

TABLE 2 = Peak stress in biaxdal compressive.-. .-

Uniaxial Test Data for Backfill Material a m loating in ..ilcopesv

Range of Axial Strain, Constraint Modulus Strain corresponding to the peak " "

in./in. Mc , psi 4m stress

-05= Poisson's ratio for concrete, assumed

-0.0015 > e > -0.0244 2,667 to be a constant

-0. 0244 > c > -0.0394 37,037 a

= - = Ratio of principal stress in the direc- ..- ,
-0.0394 > 310,588 i ai tion considered to the stress in the .

" "
principal stress direction considered

Material Model for Reinforced Concrete
The directions of orthotropy are assumed to

The reinforced concrete model used in the coincide with the principal directions of stresses
present analyses is a continuum model based on until tensile cracking occurs, after which they
considering separately the properties of plain remain frozen permanently. Unloading and
concrete and the steel. The resulting material reloading in compression assume a constant -

is orthotropic and homogeneous, and possesses modulus Ec . The complete loading, unloading, .

the main characteristics of both materials, and reloading characteristics of the plain con-
crete are shown in Fig. 26. In tension, a .. ,- :
constant Ec is assumed in all cases until crack-

Plain Concrete ing occurs. Then the concrete modulus is set to
zero until rebonding. After rebonding the post- .,'. .•

The plain concrete is represented by a rebonding modulus is set to 0.5 E ,

variable modulus model in which the elastic c
moduli in orthogonal directions under virgin com- -
pressive loading are assumed to be functions of .00 .

both the strain and the confinement (31. -o ".. 1

CRUSHING STRENGTH %"-
The functional relationships of the two OF CRNRIN 0.SR E G

elastic moduli originally suggested by Liu, I ._ -' -
Nilson, and Slate [41 are given by:

EE l E

(23) COMPRESSIVE: STRAIN " *
i ::::::?::

i
ccFg 6- Vignloading and unloading/reloading .', ''.4"'

i =( t)E + E~ 2)behavior of concrete model in L_-:--': -J

compression

106 ~.,...1 *:

-, ~ ~... . . . - . .. . .................. ..... ... ..
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The cracking strength of concrete, q 0
where a1 _s f{, in any given direction x, is
assumed to be

ft f- f o2  (25)

"' for ( 2 < cF3 and a 2 __ 0, o 2 and a 3 are the con-
"-. finement stress components in which

f = Unconfined tensile strength of concrete AXIAL STRAIN . .

ri = Slope of cracking envelope = f /ft
t c Fig. 28 - Stress/strain behavior for reinforcing 0

steel
= Unconfined compressive strength of

c
concrete

TABLE 3a2 = Minimum nonpositive normal stress Material Properties of Steel

The stress/strain behavior of concrete in tension Specific Young's Shear Yield
is depicted in Fig. 27. Weight, Modulus, Modulus, Strength, ,'..

, .', pcf psi psi psi

S" TENSION 490 29.8x106 11.5x10 6  50,000 ,

C
.--.. ;..,:

COMPRSSIVEComposite Reinforced-Concrete Model .%-: ~COMPRESSIVE ..- "
SSTRAIN REBOND Based on the transformed percentage of

0. TENSILE STRAIN steel areas in the three principal directions of
orthotropy, the effective modulus Eomp the

/ uncracked composite material is given by the
-- weighted mean between steel and concrete moduli,

using respective steel-area percentages as
COMPRESSION weighting factors. .

Fig. 27- Behavior of concrete model under E = E + E (26)
cracking and rebonding comp c c a a

in which the superscript i denotes a principal
direction,

S tee Reinforcement E p = Effective modulus of the composite

The main properties of the reinforcing steel comp material In the ith direction
* treated in the composite model are the area of E = Elastic modulus of concrete (Eq. [231)

the steel (percentages of steel area) and its c
stress/strain behavior. Both of these properties = E for unloading or reloading in com-
are prescribed in the so-called steel coordinates, c pression and for loading and
or in other words, in directions parallel to the unloading in tension
axes of the steel bars. These areas are then
transformed to the principal directions of orthot- E = Elastic modulus of steel •
ropy, where they are incorporated together with s

the tangent moduli of the steel to form the com-
- posite moduli. The stress/strain behavior of the A = Projected steel-area fraction In the
.. steel is assumed to be linearly elastic and per- ith direction .... '.

*': fectly plastic, and is identical for both tension*
and compression (Fig. 28). Numerical values A = 1 - A = Concrete-area fraction in
used are given in Table 3. c the ith direction IL-'.j&'ft
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After the occurrence of cracking, one or all compressive). The composite modulus is corn-
of the directions of orthotropy are fixed. The posed of a weighted average (according to the
effective modulus is then given by percentage of steel area) of the steel modulus

and a fraction of the virgin-concrete modulus.

+ EA~ EA ~Thus
E - a (27) i

comp A +(1\)EA E = nE A + E A (30)
s c comp c c s s

.5 - -..

where n is taken to be 0.5 in the present ..-.
in which \ is a bond-slip parameter to be deter-
mined based on experimental data. In the present analysis.
case this parameter is defined by The current reinforced-concrete model also S

takes into account the bond-slip behavior and the
I= 1 LO0 (for X !5 0.15) dowel-action effects. Detailed discussions of -

these two effects can be found in 131. The
material properties used in the calculation are

= 1 (for 0.15 < X < 1.0) given in Table 4. 6 ...17-

tensile stress in steel TABLE 4
yield stress of steel Properties of Reinforced Concrete -.c-..\-,.%

The onset of cracking is determined when the Properties Value -. ". -
stress carried by concrete a, has exceeded its
tensile strength; that is. whenever a. > fV where Specific Weight, pcf 145
aI is calculated by I t Young's Modulus of Concrete, psi 4.454x106

i Young's Modulus of Reinforcing 6
c comp Steel, psi 30x10a. (28)SteelE

Ec c + E Compressive Strength of Concretec-c (20% below nominal value), psi 6100 .i \.

in which acomp is the effective average ith prin- Yield Strength of Reinforcing
cipal stress computed for the element of interest Steel, psi 56,648 .and V[ is given by Eq. (25). % %.:::.

.*" Poisson's Ratio of Concrete 0.2 .

In the present crack model a maximum of Unconfined Tensile Strength of "
- three mutually perpendicular cracks are permitted Concrete, psi 650 .

-.- to develop inside an element. On account of the ... S
radial symmetry, one of the three crack planes Shear Modulus of Reinforcing .1. 5xl0 6

plnsSteel, psi 1.x
has to be on the radial plane. Therefore, all
three crack directions are defined, provided one = f /f' 0. 10656
of the remaining two crack planes is known. t C

After cracking and before the occurrence of
"; "rebonding," concrete Is assumed to lose all its

strength in the cracked direction, and the stress Mf E

in the reinforcement is not allowed to exceed the T
yield stress of steel. The effective modulus of Thes with no ass nadito stiff-
the composite material during loading, unloading, ness i n ass. -Couddition yid ., "s -

.
" ~~ness properties and a Mohr-Coulomb-type yield "'\'

- or reloading is given by surface in the shear stress/strain relationship

4r are selected to simulate interface friction. In
E"= E A (29) the current model, three different slip zones are

comp s s introduced. The first one simulates any slippage

"i 0)that may occur between the structure and the 5,'

In the absence of reinforcement (As 0) surrounding soil. The second slip material ...

the effective modulus is set equal to a nominal simulates the free surface in the air gap between
. minimum value to avoid numerical difficulties, the bottom of the upper structure and the top of , .

the lower structure. The third slip material '.'x
Rebonding occurs when, during unloading, simulates the contact zone between the upper . *.

the strain in an element becomes negative (i.e., structure and the seat of the circular disk cover. -

." 108 .
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* TABLE 5
* Properties of Slip Materials

(Terms are defined in Figs. 12 and 13.)

Normal %lear von Mises
Modulus, Modulus, Cohesion, Mohr-Coulomb Limit,

Interface psi psi psi Tangent Modulus psi

Concrete
6and 10 100 10 -0.016667 5S

Backfll

4bConcrete 6 10 050
and Air 1 0

Concrete
and 10 11. 5x106  500 -0.3 27,787
Steel

The values for normal modulus, cohesion, and the von Mises limit of air are artificial.
They are selected to prevent normal penetration and yielding.

Material parameters for the three slip materials governing the maximum allowable shear stress is
used in the calculations are listed in Table 5. depicted in Figure 30.
Typical normal and typical shear stress/strain
relationships are illustrated in Figs. 29(a) and
(b). The modified Mohr-Coulomb criterion MAX0

S

-o~ VON MISES

HIGH COM- MAX _M

9 PRESSION 0 ~COHESIONTAGNMOUS
MODULUS TO/ / ___ __ ____

ZERO TENSION PENETRATION an0
MODULUS C

(COMPRESSION) 4

*(a) Normal (b) Shearb
Fig. 30 -Modified Mohr-Coulomb criterion for

maximum shear stress in the slip
*Fig. 29 -Stress/strain curves for a slip element material

% .
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FAILURE OF ALUMINUM CYLINDRICAL

SHELLS SUBJECTED TO TRANSVERSE BLAST LOADINGS
=% .,

W. S. Strickland
USAF Armament Laboratory

Eglin AFB, Florida

and

J. E. Milton and C. A. Ross
University of Florida Graduate Engineering Center

Eglin AFB, Florida

and

L. J. Manta e..

Kaman AviDyne .%."'- %.

Burlington, Massachusetts

The failure of 6061-T6 aluminum cylindrical shells was .
investigated both experimentally and analytically.
Cylinders of various thicknesses and lengths with a 0
constant diameter (30.48 cm) were subjected to blast
loadings using both fuel air explosives FAE and high explo-
sives HE. Test cylinders were held fixed against rotation
and deflection at the ends and two kinds of loads were
applied using a FAE gas bag technique with MAPP gas and HE
Pentolite spheres. Both planar and cylindrical surface,.
pressure measurements were recorded and utilized to determine
loading functions for analytical models.

The dynamic response of these cylindrical shells is a compli-
cated problem involving both elastic and plastic buckling
before failure begins to occur. The buckling phenomenon de-
pends on the loading function as well as the geometrical
dimensions of the cylinder. Analytical predictions of the
buckling mode prior to actual material fracture appear to be
the major task in the overall solution of the failure problem.
Empirical solutions to this portion of the problem have shown *-. ,
some promise. .A '.

Experimental tests on fixed end cylinders show the cylinders 2 ]
begin to buckle circumferentially on the leading edge normal
to the blast wave front with buckling occurring very early
in time after the blast wave touches the cylinder. The
circumferential buckling then proceeds tangentially around the •
cylinder as the fundamental longitudinal mode begins to form
with maximum deflection occurring at the midpoint of the
cylinder length. Failure then begins as a crack at the fixed -
end of the cylinder and running tangentially away from the I
leading edge. All tests were performed for intermediate -"
pressures of two to ten megapascals and positive pressure
phase durations of one to three milliseconds. For these type
loadings only 25% to 30% of the cylinder, measured tangentially
(900), is active in the deformation process. - 9

. Analytical methods based on both finite difference and modal
solution techniques were used to calculate response of typical
cylindrical shells and results were compared to experimental J
results.
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INTRODUCTION cylindrical shells included in the
experimental tests.

Dynamic plastic response of metal
cylindrical shells subjected to sharp Analytical solutions were obtained
edge blast loads is mathematically very for a cylinder tested under both HE
complex. The overall plastic deforma- pentolite and FAE gas bag techniques O
tion process is complicated by the by assuming simple pressure distribu- C.
buckling phenomenon associated with the tions to represent the loading. The .... '..

°.- compressive load. Due to the highly DEPICS-2 and PETROS-3 shell computer ."
..- complicated nature of the overall programs, based on both geometrically ".

response only approximate analytical and physically nonlinear behavior, were
solutions coupled with experimental used to analyze the large displacement
observations are to be expected. The transient elastic-plastic response of
general results of typical approximate the selected cylinder. DEPICS-2 is a S

,* solutions (1-3] are expressions for a recently developed elastic-plastic -. P

given level of damage often displayed version of the elastic DEPICS shell
as iso-damage curves. These curves are analysis presented in Reference [6],
generally a plot of impulse verses peak and is based on a modal approach for ..
blast pressure for varying values of solving the cylindrical shell equations
the geometric parameters of the cylin- of motion established through the vir-
der. Considerable experimental work tual work method. The PETROS--3 program,
using actual blast loads by Schuman presented in Reference [7], employs a "
[4-51, Lindberg [3] and presently by finite-difference approach for solving
the authors has not completely verified the general shell equations of motion.
the approximate solutions. The selected 6061-T6 aluminum cylindri-

cal shell has a radius of 15.32 cm.,
Iso-damage curves, for a given a length of 57.54 cm. and a thickness .'*.

damage level, may be drawn using the of 0.16 cm. This cylinder was tested
experimental observations and the by both loading techniques which pro-
approximate methods, but a prediction duced different deformation patterns on
of failure for actual material separ- the windward side of the shell, probably
ation is not available. Even the caused by differences in the pressure
large and more complex computer codes distribution on the shell. The shell -. '.'.

[7-8] are limited in this area due to response analyses DEPICS-2 and PETROS-3
'*'" the lack of adequate failure criteria, were used to examine the response sen- ,.-

sitivity to assumed frontal cosine
The main objective of this study squared and cosine pressure distributions

is to further define plastic response on the shell with peak pressures and
of cylindrical shells exposed to actual decays similar to those obtained exper-
mild transverse blast loads which pro- imentally. These simple loadings also
duce actual material rupture. The imply an assumed instanteous engulfment
study is essentially experimental in of the shell.
nature and comparisons are made with .
some analytical methods. The results of this analysis are

illustrated in Figures 1 through 4.
Figure 1 shows the analytical time O

ANALYTICAL RESULTS histories of the midlength radial , '
displacement at 0 = 00 as predicted by

The analysis of the dynamic DEPICS-2 and PETROS-3. The figure also
response and subsequent failure of shows the response of this cylinder
cylindrical shells is a rather complex relative to the experimental permanent
problem. Several different models have set measured at this point resulting -
been developed, many of which are re- from the HE pentolite. Figure 2
sponse type models where emphasis is illustrates the estimated permanent S
placed on a detailed description of the set deformation patterns on the windward - "
deflection. In all cases these models side of the shell obtained from DEPICS-2 %.
must take into account large deflection and PETROS-3 for the cosine squared

'theory, kinematic and material harden- loading. Both patterns are similar to .1 4
ing, elastic and plastic buckling and the experimental final deformed shape -*

utilize finite difference or finite of the cylinder tested using the HE ,
element techniques. In this study pentolite technique. Figures 3 and 4
only transverse loading was considered show similar plots for the frontal 0

*.: and any reference to buckling or cosine loading distribution which pro- . .
response is assumed to be as a result duced a different deformation pattern
of this type loading. Response models, than from the cosine squared loading. %

*'-. p. 3ented in detail in References [6] However, neither analytical pattern was . "
and [7], are summarized in the follow- similar to the experimental patterns.
ing paragraphs. These models were used The large differences between the DEPICS .-.-.
to predict response of selected and PETROS results for the cosine
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Figure 4. Calculated permanent set at mid-length of cylinder of Figure 3. Photo- . -
"'" graph of deformed cylinder shown in Figure 13. _

loading may be an indication that more fundamental mode shapes.
modes are needed in this case for the
DEPICS solution. Both analytical and

, experimental results appear to indicate EXPERIMENTAL TESTS
that the deformation pattern of the
shell is quite sensitive to the press- Cylindrical shells of a constant
ure distribution and the engulfment radius of 15.24 cm of varying lengths
process. and thicknesses were tested in both a

Several simple vulnerability type fuel air explosion (FAE) and high
* models were developed by the authors energy (HE) environment.
" using large strain theory, rigid work Testing in a FAE device was accom-
- hardening constitutive relations, and plished using a gas bag technique
:. energy methods in a Lagrangian formu- developed previously and shown schemat-

lation. Three of these methods are ically in Figure 5. Construction of %
listed in Reference (8). Some of the the bag was accomplished using polyure-
methods showed promise in predicting thane plastic stretched taut on a
failure but gave very large over galvanized pipe frame and held together

" predictions for deflection at failure, with 3M PaklonO transparent tape. A
The basic conclusion here is the pro- 100 gram disc of green Data sheet and
cess of buckling and resulting response detonator were placed at the end of the
of the shells is too complicated and bag. The bag was then partially filled .. .
complex to be modelled by the simple with .91 kg of (MAPP) gas. The gas-air \;
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mixture was then mixed for ten minutes piezoelectric tranducers.
using a shaded pole electric motor. Pressure measurements were taken

Detonation of the Data sheet around the periphery of the cylinder
produces a Chapman-Jouget wave of con- as shown schematically in Figure 6.
stant velocity and reflected pressure This type measurement allows for
which impinges on the shell at the determination of pressure and impulse
opposite end of the bag. The magni- as a function of angular position. A
tudes of the peak pressure and impulse typical pressure distribution is shown
were varied by adjusting the distance in Figure 6.

- d, between the end of the bag and the Testing of identical cylinders was
cylinder. The experimental pressure also completed in a HE environment

"-. is highly reproduceable and typical using .79 kg 50/50 pentolite sphere "-,.
pressure and impulse values are given 21 cm in diameter hanging directly
in Table I. The reflected pressure above the cylinder. A schematic of 0

-- measurements presented were made on a this test is shown in Figure 7. The "

thick-walled steel cylinder using PCB charge radius X/A was varied to give " -. ... '!

plastic p p " " "

d sheet prape""0
test Z,

cylinder

~47r

0 0-

0 0 ZJ

Figure 5. Fuel air explosion blast loading fixture. ".-*'.r"

7.( o Exp. Data Points %

-'P=Ps+(Pr-Ps) cos 80
6. Ps. static pressure spherical

Pr=Normal reflected HE Radius,A
pressure

5.r

Pressure D %
o 'Transducer

'.-J = ,aluminu'

2. 450  cylinder

1. ' Thick walled %
/ cylinder

900

, 45 90

.', Degrees )T"77" ..7.1 7 7"7
Figure 6. Pressure instrumented cylin- Figure 7. HE blast loading test fixture.
der and resulting pressure distribution.
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peak pressures and specific impulse plastically deformed.
similar to that of the FAE output. Before examining the experimental
Calibration shots of the spherical data points in Table 1, certain general
devices were accomplished and good deformation characteristics should be
agreement was found with the analytical mentioned. For all cylinders tasted,
and experimental values given by Good- a fundamental mode shape was observed
man (9). in the axial direction; ie, m=l, for

the clamped end conditions. Figure 8
shows this fundamental shape for a

EXPERIMENTAL RESULTS .18 cm thick shell. Failure in the
cylinders was always initiated at the

A total of twenty-six cylindrical clamped boundary and at the 0=0 point. .. %-%-
shells were subjected to blast loads Rupture of the material generally
from fuel air and conventional explo- propogated from this point around the
sives to observe plastic buckling and cylinder circumference; and the

.4 failure characteristics. All shells resulting failure surface resembled
were made of 6061-T6 aluminum and had simple tensile type failure. A typical
a diameter of 30.48 cm. Cylinder failure is shown in Figure 9. The
thickness and length were varied in an modes or shape of the cylinders circum-
effort to determine the effects of ferentially, as represented by n,..-
these parameters on failure and buck- are believed to be functions of the
ling modes. The magnitude of the blast shell geometry, material type, and the 0
load was controlled to produce material applied shock loads. If analytical
rupture or near rupture whenever methods are to be used to predict
possible. deformation and failure, the circumfer-

A summary of the test results ential mode shape must be properly
appears in Table 1. The pressure and determined; as the shell stiffness is

" impulse, P (0=0) and I (0=0), are those strongly influenced by the number of
reflected values as seen by the lead- buckles generated.
ing edge of the shell. The circumfer- The circumferential mode is the 0
ential mode number, n, represents the most difficult to analyze or observe
number of full buckled waves around from the experiments. Many buckling .-
the shell circumference assuming the formulas have been authored, a
cylinder was fully buckled. This majority of which were determined
number, however, is not truly empirically. Most of these were
representative of the deformation generated for static loads, or radial
process, in that only a portion of the loads uniformly applied around the
shell buckles circumferentially. The shell, and were not applicable for the •
percentage of shell deformed was conditions of transverse blast loads
relatively constant and column (10) of as applied in these experiments. The
Table 1 shows that only 20% to 35% of experimental data gathered here tended *,.

the cylinder circumference was to support theories of Greenspon (1-2]
which suggests that a given cylindrical
shell may be forced into a collapse
mode, where n might be considered 1,
or a buckling mode where n has some
large value that is a function of the

" * "shell length, thickness, radius, and

*., ° °- °

4%

Figure 8. Typical ide view of axial Figure 9. Typical hell failure. ''.
mode shape.
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TABLE 1

SUMMARY OF RESULTS ,

*(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11L

DATA a/h L/D P I n Center Mat'1 Load X % of i i
(0-0) (0=0) Pt. Failure Device Circum.

Defi. Buckled

1 188 .39 2.41 0.52 28 1.63 NO BAG 1.37 30 S
2 188 .39 2.96 0.59 38 2.03 YES BAG 1.22 30
3 188 .39 3.65 0.67 34 2.87 YES BAG 1.07 --

4 188 .39 4.48 0.76 36 10.41 YES BAG .91 --
5 117 .39 4.48 0.76 22 2.24 NO BAG .91 32 .
6 117 .39 6.03 0.90 25 2.31 NO BAG 0 34

7 117 .39 8.27 1.28 30 3.02 NO PENT. SPH. 1.71 25
8 95 .39 6.03 0.90 26 1.02 NO BAG 0 24
9 95 .39 6.03 0.90 26 0.74 NO BAG 0 24 S

10 85 .39 17.24 1.93 25 2.64 NO PENT. SPH. 1.25 34
11 85 .39 23.44 2.33 23 1.37 NO PENT. SPH. 1.10 30
12 188 .89 2.96 0.59 32 6.10 YES BAG 1.22 34
13 188 .89 3.65 0.67 32 >11.43 YES BAG 1.07 --

14 188 .89 4.40 0.76 33 >11.43 YES BAG .91 --

* 15 117 .89 4.48 0.76 26 3.96 NO BAG .91 32
N. 16 117 .89 6.89 0.83 34 6.05 YES BAG .61 36

17 117 :89 6.03 0.90 22 8.26 YES BAG 0 -

18 95 89 6.03 0.90 18 3.05 NO BAG 0 34 r
19 95 .89 5.52 1.03 1 0.86 NO PENT. SPH. 1.98 24
20 95 .89 10.34 1.45 1 >11.43 YES PENT. SPH. 1.55 --
21 85 .89 6.03 0.90 19 2.41 NO BAG 0 32
22 85 .89 6.89 1.18 1 8.26 YES PENT. SPH. 1.8a --
23 85 .89 8.27 1.31 26 1.60 NO PENT. SPH. 1.71 22
24 188 1.89 1.28 0.37 13 4.32 YES BAG 1.83 34
25 188 1.89 1.52 0.40 13 --- NO BAG 1.68 34 S
26 188 1.89 1.86 0.45 19 >11.43 YES BAG 1.52 -- . -. ,-"

27 117 1.89 2.96 0.59 1 3.66 NO BAG 1.22 29 - -
28 117 1.89 3.65 0.67 1 7.87 YES BAG 1.07 -- .. %

29 117 1.89 4.48 0.76 1 7.32 YES BAG .91.
30 95 1.89 6.03 0.90 10 6.99 YES BAG 0 --
31 95 1.89 5.52 1.03 1 5.56 YES PENT. SPH,. 1.98 32
32 85 1.89 6.03 0.90 10 6.50 NO BAG 0 37 --
33 85 1.89 6.89 1.18 1 3.56 NO PENT. SPH. 1.83 32
34 85 1.89 8.27 1.31 25 7.21 YES PENT. SPH. 1.71 30
35 85 1.89 10.34 1.45 25 7.06 NO PENT. SPH. 1.55 33

%"."'"-.%.

P (=0) = Normally Reflected Pressure in Megapascals

I (0=0) = Normally Reflected Impulse in Megapascal-millisec.

CENT. PT. DEFL. in CentimetersU L/D = Length to Diameter Ratio of Cylinder

a/h = Radius to Thickness Ratio 0
n = Circumferential Mode Number..

D = Distance to Explosive in Meters -"
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material type. Greenspon further The data for L/D values of 1.89 show
suggests the use of Reynolds [10] five collapse patterns at data points
buckling formula to determine n. 27, 28, 29, 31 and 33. The shells of .

% Comparison of this formulation to this group that did buckle all had n
Table I showed reasonable agreement values between 10 and 25. This indi-
for cylindrical shells of L/D less cates that for L/D values of approx-
than one and the hypothesis of a given imately one and larger the higher
shell deforming in either a "collapse" buckling modes are less dominate. .
pattern, or buckled pattern appears to The appearance of a collapse mode
be supported by the present data. and buckling mode in the same cylinder

The data points in Table 1 are size, shown in Figures 13 and 14, is
ordered in three groups of constant apparent in data points (18, 19) (21, .
L/D values. The data points for L/D 22), (30, 31), and (32, 33). Each set
.39, given for decreasing a/h values of data represent cylindrical shells .-

in Figure 10-12, show a decrease in tested with the same L/D, and a/h
n as the thickness increases. This values but with different applied

% trend continues for L/D values of loads. This suggests that for a given
% .89. This grouping, however, contains shell size there exists a critical load

three data points, 19, 20, and 22, that determines if buckling occurs or
which did not buckle, but apparently a fundamental collapse pattern is
deformed in the collapse pattern, formed. Almroth (11) calculated such

critical loads for small deflections
and elastic deformation. Experimental
determination of dynamic critical load
values would require extensive testing
and it appears that peak pressure or
impulse alone is not a sufficient
description of the load to use as .
critical values to determine collapse
or buckling. To vary both experimen-
tally appears impractical outside a
shock tunnel.

The failure, as defined in this -

report, was considered to be material
rupture. Briefly discussed in the
above paragraphs, this was observed to
initiate along the clamped edge at the
0=0 point. Column (8) of Table 1
indicates fracture or nonfracture of -%".

Figure 10. Cylinder representing Data the shell material. The approximate
Point 2, Table I. L/D-.39, a/hl188, centerpoint deflection is shown in
2.96 MPa reflected pressure. column (7). As would be expected, the
2.96. M .'a longer shells deflected more before ..

'0

r 1 . C
Point,,Tabe I. 6 : a P 9-

%.

- w " L .: ' I.

,...- •.•-•

ro- - .

I.-' Figure 11. Cylinder representing Data Figure i2. Cylinder representing Data _,
i...Point 6, Table I. L/D.•39, a/h=177, Point 9, Table 1. LIDm•39, a/h-95 , %%

''e6.03 MPa reflected pressure% reflected pressure. .-
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Figure 13. Buckled pattern for Data Figure 14. Collapse pattern for Data . "

Point 22, Table I. Length 57.54 cm, Point 22, Table I. Length 57.54 cm, -a

thickness 0.16 cm FAE test. Mid-length thickness 0.16 cm HE test. Mid-length
permanent set shown in Figure 4. permanent set shown in Figure 2.
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DISCUSSION

Mr. Smith (Texas Tech University): Did you
ever look at just the bending that the side-on -.
force puts on the shell to see what interaction
that has with the force on the shell%

Mr. Strickland: No, not experimentally.

Mr. Smith: You had a steel shaft running
through there and it looked rather rigid but
I couldn't see what the far ends looked like.
Did that keep it from bending much?

Mr. Strickland: If it did move, it probably
moved very little because that was a pretty
rigid system. We have looked into that and
I feel that that is the stiffness you have
to overcome to fail that.

%
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EXTENDED TRANSFER MATRIX METHOD FOR FREE VIBRATION OF SHELLS OF REVOLUTION . . .

Seshadri Sankar
Department of Mechanical Engineering

Concordia University, Montreal, Canada

Free vibration of shells of revolution is analyzed using an

extended transfer matrix method to determine the natural fre-
quencies and mode shapes. The proposed method utilizes Newton-
Raphson iteration technique for determining the natural fre-
quencies from within a range on either side of the true natural -
frequencies and hence allows a greater degree of error in the "
selection of trial frequency. The fundamental equations for
free vibration are derived based on the classical bending
theory. From these equations, a transfer matrix relation
between the state vectors at the boundaries are obtained using
fourth order Runge Kutta integration method. By applying the
boundary conditions, the natural frequencies correspond to
those trial frequencies for which a residual quantity of a
certain determinant is zero. However this paper utilizes an * -.
improved procedure of modifying the basic method so that the .
derivative of the residual quantity of the determinant is also.'.
computed simultaneously along with the residual quantity itself. .
The derivative of the residual quantity are determined by formu-
lating an extended transfer matrix relation which relates the
extended state vectors at the boundaries. This extended state
vector consists of the original state vector and its derivatives
with respect to the frequency w. Finally, Newton-Raphson itera-
tion technique which utilizes both the residual quantity and its . -
derivatives is used for the characteristic determinant to obtain
the next trial frequency. Numerical examples are given to illus-
trate the simplicity and straightforwardness of the proposed
method in finding the natural frequencies. Results indicate
that the method is accurate and allows a greater degree of error
in the selection of trial frequencies.

INTRODUCTION shells of revolution. " .

The shell of revolution is an impor- Since free vibrations occur in the IN
taint structural element which has found absence of all external loads, the free

• wide use as a load carrying member in vibration analysis of shells of revolu-
various turbomachinery components, re- tion concern only with the solution of
finery equipments, nuclear reactor yes- a homogeneous system of partial differ-
sels, pressure vessels, and the like. ential equations governing the free
The failure of any of these structural shell vibration with homogeneous boun-
elements are often suspected due to dary conditions. The natural frequen-
either adverse dynamic vibrations or cies of the shell are determined by
repeated cyclic stress alterations. A finding the roots of a determinant

* knowledge of the free vibration charac- whose elements are related to the solu-
teristics of these structures is impor- tions of these homogeneous field equa-
taint in order to avoid the destructive tions. For simple shell configurations ..

- effect of resonance with nearby rota- such as cylindrical and spherical .
ting or oscillating equipment. This shells, these solutions are known hyper-
paper presents an extended transfer geometric functions [l]. However, for
matrix method for analyzing free vibra- more complicated shells, numerical
tion modes and natural frequencies of methods employing finite difference

°0
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* .0

approach [2, 3] or direct integration M, +(r+/r)M +(r /r)(M -M )coso-
techniques [4, 5] have been used to
obtain the solution. Free vibration of r 0 Q (r /r) (ph3/6)U ,tt (id)
cantilever shells using the Rayleigh-
Ritz method [6] and by matrix progres- M +(r /r)M +2(r/r)cosoM
sion method [7] have been investigated. Mo,8+ 0 ,820 o -
haIn this paper the free vibration r Q = (r /r)(ph 3/6)U (le)
characteristics of shells of revolution 0 0 ett
are obtained by an extended matrix
approach [8]. This extended transfer Stress - strain relations are: °...
matrix relates the state vectors con-

*'-, sisting of displacements, stress resul- No = K(e 8+VC) (2a) ....

tants and their derivatives with res-
pect to frequency w at the two bounda- N = K(r +VC ) (2b) O
ries of the shell and is formulated 0 8 ".

. using the regular transfer matrix Neo = Noe (I-v)Ke (2c)
method [9]. Finally the paper presents
the use of this extended transfer M = D(K +vK (2d)
matrix relation in the determination of
natural frequencies via Newton-Raphson M = D(K +vK (2e) '.
iterative technique. The proposed
method gives a quadratic convergence to M80 = Mo8 = (1-v)DK80  (2f) "
a natural frequency from within a range
on either side of the true natural fre- Strain - displacement relations are:

2- quency and hence allows a greater
degree of error in the selection of = (l/r)(U +U coso+W sino) (3a) .- .

V. trial frequency. 8 ,8 0

""= (1/r) (U +W) (3b)
FUNDAMENTAL SYSTEM OF EQUATIONS FOR 00 0

FREE VIBRATION OF SHELLS OF REVOLUTICN 2e = (1/r) (U ,-U coso)+ -

Based on classical bending theory, (1/r )U (3c).
the fundamental equations governing the , ,%a-
stresses and deformations of shell of K = (1/r)(08,8+a0coso) (3d)
revolution are: K%().4.

(a) Equations relating force equi- K0 = (1/r )0 , (3e) 

librium; 2K = (l/r)(a,8- coso)+
(b) Stress - strain relations, and 80 0
(c) Strain - displacement relations. (1/r )8 (3f)

For an arbitrary shell of revolution 0 ,:
as shown in Figure 1 and vibrating under 88 = -(l/r)W 8+(sino/r)U 8  (3g)
arbitrary edge loads, the governing sys-
tem of equations are given in [1] which 8 = -(/r )W, +(/r (3h)
are derived by Reissner [10] based on
linear classical theory of shells. De- It is assumed in the above set of
noting the first and second derivatives equations that the shell is suffiently -with respect to any coordinate by ( )x thin, so that
and (. ),xx, the fundamental set of
equations are given below. l+h2/12r 2 l %!

The dynamic equalibrium equations where r is the minimum principal radius
which include the translatory inertia of curvature. 0
can be written from Figure 2 as:

Now combining the three sets of
N 0,+(r /r)N 0 ,0+ (r =/ r ) =(N0-N6)co so+Q  = equations and expressing effective

transverse and tangential shear resul- %..-rophKiU ,tt (la) tants by the equations

N 0 +(r /r)N ,6+2(r /r)cosoNo,+ Q = Q +(l/r)M 0,e (4a)

+(r /r)Q sino =r phK U (lb) N = N +(sino/r)M (4b) ', .
0 o 0 8,tt 80 0

Q,+lr0/r)Q8 ,8 +(r /r)Q0 cO-N0 - the fundamental equations can be
reduced to eight differential equations

(r /r )N sino 0 hKW ,tt(c) with eight generalized variables con-
sisting of four displacements W,

122 %.
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- U and 8 , and four stress resul- A2 6 = 1/K" " rants Q, NO, N and Ne. .--.. -.

Assuming that the shell is rotation- 3 I nGD sin 20/Kr 3,
ally symmetric, the shells of revolution
will consist of complete latitude cir- A32 = n(l-GDJ sino/Kr)/r,
cles. Then the fundamental variables
for free vibration can be assumed to be ADr
separable of the form 33

SW = 2nGD sinO/Kr 2 , %

U, UAn = 2(1-GD sin 20/Kr 2)/(l-v)K %

- On cos no cos wt
N = N n=-vn

2/r 2, = -yn sin O/r 2," Me = /M."'-
.Mon A 4 vcos O/r, A4 8  1.l/D

L n (5a)%

u A51 = 2n2GD(l-v) cos 2 /r4 +K(l-V 2)' 1  
II e n  sin no cos wt h 2 n 2

LL N (5b) .1 ."
2  

-

where n is a circumferential wave number A52 = K(l-v 2 ) sin20/2r 2-n2GDJ(l-v)
and w is a circular frequency.

co"-
Substituting equations (5a) and (5b) r 3 '

in the resultant eight differential n2D sin -

equations formed by combining equations A5 3 = n(l2)(K+E-2) r -nGDH(I-)
(1-4), the governing equations for free r2 -r.
vibration reduces to a vector differen- cos20 2
tial equation of the form. r3  n

-z()] [A(¢)] [z(¢)] (6) A54 = n2 D(l-v) (l+v+2G) cosO/r 3, -' *-

z~ [A -co*/r A 6

where 4 is the independent variable, A55 -cosf/r, A56 = P, A57 = -A31, •
[z(O)] is a (8xl) force and displacement A = -A
vector, and [A(O)] is a (8x8) coeffi- A5 -A4 .

cient matrix. --

Replacing the independent variable 4 A = K(l-V 2) sin20/2r 2-n2GDJ(l-v)
by the length parameter s measured along 61

the meridian as shown in Figure 3, the coso/r 3 ,
following transformation can be written:

A 62 = K(l-v2) cos2o/r2+n2GDj2(l-)/2r2d(.) = (1/r )d("-.) %

ds 0d -w2ph, - '

Then using the above transformation, 
, -...

equation (6) can be rewritten in the A = nK(l-v 2 ) cos 20/r2+nGDJH(l-v) cos .
following form, 2r2

d A6 n2GDJ(l-)/r2 A . .-
ds (z(s)] = [A(s)] [z(s)] (7) 64  , A i

where A66 = -(1-v) cosm/r, A67 = -n(l-GDJ

T (s),N (s),N (s),M (s)

and ~ ~ O te Q sN, 5in ( O Mn (sA)=

and the elements of the coefficient A A A
O matrix [A(s)] which depend on the mate- 71 3 A72  6 3,

rial properties, geometry and natural 2 n
frequencies of the shell are expressed A73 n2 -(K+DS. .,
as follows: cos24 r 2 h(l-h 2 sin2+/122 )

A1 2  1/r, A 4 = -1 2r2  ...2ph(l+h2sin 2 O/l2r 2),

A 21 = -P, A2 2 = -v cosm/r, A2 3 = -vn/r,
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A74 = -nD(l-v)[GH-(l+v)sin*/r]cos*/r2  at stations i, i+l and at a station
midway between i and i+l. [Z+ 1 ] and

A76 = -A23, A77 = -(2-GDH sinO/Kr) [Z1] are the state vectors at stations
i+l and i respectively.

.- coso/r,
In this paper the fourth order Runge

A78 = -A4 3, Kutta numerical integration method is
used for integrating equation (7) and-
hence the relationship between [zi+l-

A =A ,A = A A = Aand [zi], is given by V.A' t
81 5 4 82 64 83 A7 • -1.% 7%-" [z~~~~~~~~~i+l] =[i]([o+[l2k2 [k ) 1%%•

A = D(l-v)[(l+v) cos2o+2n 2G]/r 2- [Z I = [z ]+T([k0]+2[k 1+2[k 2 ]+[k 3])
S84 (9)

,-2ph3/12, where

i i
A = 1, A87 -A 3, A 88 -(l-v) coso/r [k = L(A (s)][z I

ii[kI] = L[A
i (s+ L/2 )] [zi+ko/21

FORMULATION OF TRANSFER MATRIX RELATION 0 (0)

The eight fundamental variables [k2] = L[A (s+L/2)][z.+k /21
given in equation (7) represent the

"" natural boundary conditions on the axi- 2-.
" symmetric edge of the shell. Depending [k3] L[A i (s+L)][zl+k2

on the physical nature of the problem r
the boundary conditions are character- The matrices [Ai (s ) ]  [Ai (s+ L ) ] and..-
ized by four known displacements at one [Ai(s+L/2) ] are the values of the matrix
end of the shell and by four known [A(s)] at station i, i+l and at the

- stress resultants at the other end. station midway between i and i+l. Now
Hence the problem of free vibration of substituting equation (10) in (9) and

. shells of revolution reduces to a two rearranging in the form of equation (8),
,:. point boundary value problem with a the local transfer matrix [Ti] can be
, differential equation (7) together with expressed as m

the associated boundary conditions. e ,

The solution for this two point boundary .L 1 1
value problem has been carried out by IT = [I) + Lt(IA (s)] +44[A (s+L/2)]+
reducing to an initial value problem by
using numerical integration methods. i L2 "[Ai " i +
However, in this paper a transfer [A (s+L)])+- -([A i (s+L/2)][Ai (s)]+ ' -
matrix, relating the state vectors at
the two ends of the shell has been [Ai(s+L)] [Ai(s+L/2)]+
formulated which reduces the differen-
tial equation (7) into a set of alge- [Ai (s+L/2) 2)+_ ([Ai (s+L/2) 2.
braic equations. Moreover the elements [_L)"["/)
of the transfer matrix depend only on 1

i the values of the coefficients of [A(s)] [Ai(s)]+[Ai(s+L)].
and hence can be easily evaluated.

E(s+L/2)]1) +L([A
i (s + L ) ]

In order to compute the transfer ,q/.2 4 -

matrix, the entire meridian of the '..2-i
shell is approximated to be an assem- [Ai(S+L/2)] [Ai(s)])

[49 blage of conical shell segments of short _

. length L as shown in Figure 3. Now
integrating equation (7) numericallySucsvapitoofqto

• -from station i with a step size equal
• "to the length of the segment, then the (8), the local transfer matrix relation- .ships for other stations along the """.'

value of the state variables at station sisf ote saon angh
i c b a ,meridian of the shell can be written ast'." (i+l) can be obtained. Relating the

two state vectors [zi] and [zi+], the
local transfer matrix relationship can [Zi+2 [T i+l 1zi+l ,0
be written as J-z .,

i..1[1i+3 i+2 i+2
[z I[T i] [z] (8) (z 1=[T-],z ],|'." ~~etc. ,,.• -
where [T is the local transfer matrix

-. which depends on the values of [A(s)] -Z

C0
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Now combining the individual local :w = 'trial -

transfer matrix relationship, the global (15)
transfer matrix relationship between det[D*]
the two boundary state vectors of the (det[DI +det[D2]+det[D*I 3etrD]4-
shell can be obtained as

-,n] = [TI [zI] (12) In equation (15) the determinants are
evaluated at w = w and the coef-

goa trnemarxificients of the matrices D1 , D2 , D3 andJ,. where the global transfer matrix is "'
where the D4 are identical to that of matrix D*

except for the following coefficients
nT n T 1 which are related to the coefficients of

[T] [Tn  T 2  ...... [T2 [T matrix 6*.
D! (I, 1) = *(I, 1) -'''°_,

CALCULATION OF NATURAL FREQUENCIES
USING NEWTON-RAPHSON ITERATION D2 (I, 2) = D*(I, 2)
TECHNIQUE 1 1, 4 %

D (1, 3) 6*(1, 3) .% '
By partitioning the matrix and vec- 3  3)-.-,3

tors in equation (12) gives D (I, 4) = 6*(I, 4)

zBln1FA. B 1

[... (13) where D* = [D*

L 2  
Hence knowing the matrices [D*] and 4..

(6"], the natural frequencies can be -- "
calculated using the systematic proce-The coefficients of matrices A*, B*, dure outlined in equation (15). 0

C* and D* are functions of frequency w.
In general, the boundary conditions are The number of steps for convergence
characterized by known displacement using this method depends on the close- .
vectors [z I at one edge of the shell usngf th initod depnd o n c oand by konstress resultants [z ] at ness of the initial trial frequency to : .kno~n sz 2] the true natural frequency. However, .
the other edge. For example, if station within the vicinity of a root, conver-
1 is fixed and station n is free, then gence is quadratic as compared to super-the boundary conditions are given by linearly convergent root iteration

method such as inverse interpolation _6-'
[z I = = 0 method. Since Newton-Raphson iteration -> '1 Z2  technique requires a derivative of the %.

function at each step, the computation Iii.Substituting these boundary conditions t m o b e e t p o e e h s .4,-;:

in equation (13), the natural frequen- time doubles per step. However thisincrease in computational time per stepcies are determined from the roots of is offset by the fewer number of stepsthe polynomial for the same final accuracy. An Addi-
tional advantage of the Newton-Raphson

A(w) = det D*(w) = 0 (14) method is that it is a single point . %
method requiring only one initial trial %
value. Further it has a known suffi- " . "

The natural frequencies for free cient condition for convergence [111 .
vibration are those frequencies for given by
which the det [D*] in equation (14)
vanishes and are normally obtained by d .
trial and error search procedure. How- trial wtrue - n -1)
ever in this paper an improvement to
this basic method is presented. The where d is the separation between the
improved procedure consists of computing true natural frequency under considera-
the derivative of det [D*] with respect tion and its nearest neighbouring
to w together with det [D*I itself at natural frequency, and n is the degree
the chosen trial frequency. Newton- of polynomial A(w) under consideration.
Raphson technique which incorporates o
the values of det (D*I and its deriva-
tive with respect to w is used to obtain EXTENDED TRANSFER MATRIX RELATIONSHIP
the next trial frequency. FOR FREE VIBRATION

The recurrence relation between the Suppose equation (8) is differenti-
trial frequencies based on Newton- ated with respect to w and then if
Raphson iteration method is given by
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combined with itself gives an extended n-2 n
local transfer matrix relation which [Z2

n] [D*] [Z2
1 ] (18)

can be written as

-i+T i [z2
n
] = [H* D*] ( (19)= 0 z

"i + l i 6 ) 2

['"' ~Substituting the boundary condition".' ,
where a dot represents d.fferentiation Sn
with respect to w and [ti] is the ex- [Z2 n] = 0 in equation (18), a non-tri-

tended local transfer matrix found by vial solution exists only if the det "

differentiating equation (11) with (D*] vanishes as stated previously in
respect to w. The new state vector in equation (13). Suppose if the det [D*]
equation (16) consists of the original does not vanish for a chosen value of

*- ." state vector of four displacements and the trial frequency w, then there is a
four stress resultants and its deriva- residual quantity of [Z2n] according to

tives with respect to w and is referred equation (18). Hence [z2n] is a func-
to as the extended state vector. tion of the trial frequency w. Now

differentiating equation (18) with re- --'-.
Successive application of equation spect to w and comparing with equation

(16) results in an extended global (19) gives "
transfer matrix relation for the whole d
system relating the extended state vec- H*..
tors at the boundaries. This relation-
ship can be written as

Hence the coefficients of [D*] are
- -1 known through the extended transfer

z n 0! n o matrix approach which can be used to
[~n In-1 LTn-2  DDD n 4  netemtie
""= -' identify the coefficients of matrices 0n]q [n- Tn  In- Tn  D , D 2f D3 and D4. Once the matrices %...L jT]D 1, D2 , D3 and D4 are known, then the

L Newton-Raphson iteration technique in
equation (15) can be used for finding

-1 ithe natural frequencies systematically.

... After determining the natural fre-
1 T quencies, the corresponding solution for

[z2 ] is obtained from -.

i+.Rewriting the above equation gives z 1 (i) = d(-l)iA (20)

n A B where z2
1 (i) denotes the i th element ofn A* B 0 0 z1 [Z21] , d is an arbitrary constant, and

n CI 0 0 Ai is the determinant of a submatrix of .
2 C* D* [D*] by deleting the i th column. Once

-- -- ----------------- [z2
1] are calculated from equation (20),

n E* the mode shapes at other stations alongn  
E* F* A* B* Zl1 the meridian are calculated from equa-

- 2 n G* H* C* D* tion (8).

* ILLUSTRATIVE EXAMPLES AND RESULTS S
As before, if it is assumed that sta- To illustrate the accuracy of the

tion I is fixed and station n is free, method described in the paper, the fol-
then the boundary conditions are given lowing test examples are considered.
by The first example is an axisymmetric

P * free vibration of a truncated conical
[z '] [z z 1] = 0 shell in the shape of a loudspeaker cone

* with a semi-cone angle of 30 . The cone
n,= n] = 0 was assumed to be free at the outer edge .

[2 2 and clamped at the inner edge. The
values of the three lowest frequencies
and the corresponding mode shapes are .- Inserting the boundary conditions at and the pres n t mod and fon." station 1 in equation (17) give obtained by the present method and found . '

s 1 a 7to have an excellent agreement with the .. %

results obtained in [4, 5]. The results
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are illustrated in Table 1. The method vibration of shells of revolution. The
outlined in this paper completely elimi- method is general, straightforward, com-
nates the trial and error procedure; pact and economical for determining the
that is, by selecting an arbitrary ini- natural frequencies of thin shells of
tial value, the method utilizes a sys- revolution. Unlike the methods found in
tematic, efficient and accurate proce- the literature, the fundamental system

*dure in determining the nearest natural of equations which are in the form of
frequency in a limited number of steps, differential equations are reduced to
Hence by using different trial values, algebraic equations through the formula-
all the required natural frequencies can tion of an extended transfer matrix. A

*be determined. Table 2 shows the range Such a method automatically eliminates
*over which a trial frequency may con- any trial and error procedure in the

verge to the critical required fre- calculation of natural frequencies.
quency. It can be seen that the range Finally, a single frequency dependent0
of convergence for initial values higher determinant is obtained whose value re-
than the natural frequency is appreci- duces to zero at true natural frequen-
ably greater than the range for initial cies to satisfy the boundary conditions.
values lower than the natural frequency.
Also, this range of convergence decrea- The proposed method also introduces . *.-

ses with the mode number. From the a systematic procedure for finding auto- .

above results, it can be concluded that matically the roots of the frequency
the present method allows a greater determinant based on the Newton-Raphson
degree of error in the trial frequency iterative technique which incorporates w

for values greater than the true natural both the residual quantity of the deter-
frequency. minant and its derivative. The paper

also presents the formulation of an
%The second example is to determine extended transfer matrix from which the .'

Vthe natural frequencies of free vibra- values of the derivative of the deter-
tion of cantilever cylindrical shell. minant are directly calculated.
Res.ults obtained using the extended
transfer matrix method presented in this Natural frequencies of cantilevered

* paper are compared in Tables 3 and 4 conical and cylindrical shells are
with those calculated using matrix pro- calculated and found to have good agree-

*gression method [61, exact solution ment with the results found by other
based on Rayleigh-Ritz method [7], and investigators. Major advantages of the

*using Green functions [12]. The results method presented are that it allows a
show that there is good agreement be- greater degree of error in the selection
tween the corresponding results, of trial frequencies and gives a quadra-

tic convergence in calculating natural
Hence it can be said that the exten- frequencies.

ded transfer matrix method is a simple,
efficient and accurate alternate methodThmeodpsntderisot*.-
for calculating the natural frequencies limited to vibration analysis of shells
and mode shapes of free vibration of of revolution but also applicable to
shells of revolution and is applicable vibration problems in plates, beams and
to rotationally symmetric shells with torsional systems.
meridinal variations in Young's modulus,
Poisson's ratio, radii of curvature, and
thickness. However the method is not ACKNOWLEDGMENT
suitable for long shells with the
meridinal length exceeding a critical The present work is a part of the -

value because of the loss of accuracy research program for the developing
of the results [51. The loss of techniques for analysis and design of
accuracy is caused by the subtraction mechanical systems. The support of the0
of almost equal, very larqe numbers National Research Council of Canada,
in the calculation of the frequency Grant No. A3685 is acknowledged.
determinant [11]. By the use of
Gaussian elimination method [5] such %~
loss of accuracy can be eliminated in REFERENCES
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v Poisson's ratio

0 mass density

0 angle between normal and
axis of symmetry0

w circular frequency, rad,~ec

x derivative with respect to a
any coordinate

[.] capital letter inside
square bracket represents0
a matrix and small letter

avector6N

[T transpose 
. Ji

a..s

hLI

(meridian) 
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Fig. 3 -Schematic of a shell of revolution as an assemblage of*.-*-
conical shell segmentst.
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TABLE 1

Natural Frequencies of Axisymmetric Vibration of Truncated Conical Shell

h = 0.0625 cm, v = 0.25

E = 4.66 X 104 Kg/cm 2 , P = 1.43 x 10 - 3 Kg/cm 3 , r"-

Natural Frequencies (Hz)
Mode ____________

Extended Transfer
Number Reference 4 Reference 5 Matrix Method

1 1071 1072 1072

2 1314 1315 1315

3 1608 1611 1610
-°l ° . .

-...--..

TABLE 2 0
Convergence Range to a Root

Vibration of a cantilevered conical shell i"r'"~~ ~ nwtil 1 0.i1%-
described in Table 1 ,.new- triall

Mode Computed IPercentage Range of Convergence to Root
w value

Number (rad./sec.) From Lower Limit From Higher Limit

1 1072 22 48

* 2 1315 16 21

3 1610 8 12
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TABLE 3
Natural Frequencies of a Cantilevered Cylindrical Shell

E = 2.11 X 106 Kg/cm2 , v = 0.3, r = 10.16 cm

p= 7.84 x 10- Kg/cm, r/h = 100, r/L = 0.4489

Natural Frequencies (Hz)
Mode Circumf erential

Extended Transfer Matrix Green
*Number Wave Number Matrix Method Progression Method [71 Functions Method 112]

2 998 1002 990*0

985 t

1 4 491 489 483*
550

5 620 617 670*.-
735 t

2 3438 3440 3420*
t-3400~

2 4 1612 1608 1635* '

1670
5 1301 1296 1370* .

2 5738 5732 5700*

3 4 3308 3305 3300*

3280~

5 2632 2623 2640*

*Integral equation solution with 7 internal points in reference [12].

t integral equation solution with 5 internal points in reference [12].

*~ 0*

* w * a- ,., ap 1

%' % -P . a-
a.' --a

*% 
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TABLE 4 *~

* Comparison of First Mode Frequencies with Different Circumferential Wave Number

106 %%4. V

E = 2.11 x 16Kg/cm21  v = 0.3, h/r =0.01

p = 7.84 x 10O Kg/cm 3, r = 10.16 cm,

Natural Frequencies (HZ)
ircumferentia3L/r

Wave Extended Transfer Matrix Progression Exact Solution Green ..

Method [12]* .

1.18 15091 15100 14988 15316
2

2.16 6548 6550 6490 6535

.22 6198 6220 6270 66930
4

.39 5218 5210 5307 5304

**Integral equation solution with 5 internal points in reference [12].
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A PRACTICAL SCHEME FOR INCLUDING SHEAR WALL (OR FLOOR)

STIFFNESS IN FRAME ANALYSIS

Robert M. Mains
Department of Civil Engineering

Washington University

St. Louis, Missouri

The stiffness representation of shear walls (or floors) is developed
in terms of a general triangular element in plane stress. This
triangular element is used to make up a rectangular element from two , V
and four triangles. The results are compared with the Argyris-
Przemieniecki formulation of stiffness. Combinations of rectangular %
and triangular elements to handle walls with openings are discussed.
A tabulation of stiffness coefficients for a rectangular wall for a
range of aspect ratios and Poisson's ratio of 0.3 is given in the
appendix. J-115 .

. INTRODUCTION From elastic theory,

In considering specifically how to include a - (3)
: shear-wall stiffness and shear-floor stiffness x ax

in frame analysis, the author was unable to
- find in the literature explicit information C av

which could be directly applied in an analysis. y yc 4  (4)
A study of several strength-of-material ap- •

proaches produced unsatisfying, or unsymmetric, au %v

or unsuitable stiffness matrices. Consequently Txy ay+x c2 3
a development of a rectangular element stiff- . %%

ness matrix which would be directly useable in If the u and v nodal displacements are substi- *

"* a frame analysis was undertaken. Rectangular tuted into eq. (%) and (2),
and triangular element stiffnesses in plane ".

stress, and combinations thereof, are presented u = ui-cl(x i)+c(Y
in forms which lend themselves to clear physical i i C

understanding of what is being done or assumed. u u i+cl(xj xi)+c 2 (Yj-Yi)No claim is made that the principles involved ' -. .

are new, but the results are directly applicable uk = ui+c

in frame analysis and are not restricted to k ""x'x....-'.i
orthogonal frames. vi. vc'.. )c(

THE GENERAL TRIANGULAR ELEMENT IN PLANE STRESS v - vi+c3(xJ-xi)+c4(yi-yi)

Assume a general triangular element in vk = vi+c (x _x )+c(y_y)
-. plane stress as in Fig. 1. Lines in the element 3 -k 4 k.i47I

which are initially straight remain straight
after deformation. Hence the strain field In matrix form, eq. (6) becomes

within an element is constant and edge stresses, 1 -uil
are constant. Then, if u is the x displacement (xxi) (y-y) 0 0 c * u -u .

and v is the y displacement, I
(k-Xd (yk-Yi) 0 2  - k

=." • ~u(x,y) = ui + clx + c2Y()....•"''

v(xy) v i + c3x + c4 y (2) 0..(xj xi) ( .c3  - vj-vi

0 0 (xk-xi) (yk-yi) 'c4  -vk-vi

(7)

135,
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'le solution of eq. (7) for c gives: and the solution of eq. (13) for a gives:

-( 3-i 0 0 J- yx1 +~ 0 iCs
ti SC [0al r-0-l +(-L) -(J-1 v ju- jl oIa-. ---''. 0 -

or in compact notation:

inwhich D - (9) E E* E (15)

Equation (8) can be rearranged to give: The equivalent nodal forces for the stresses
are shown in Fig. 1 (d) and (f). In matrix
form these are:

I1 'fk (yy 1) 0 (7k-yj ) 0 'a-Y) / 0o

2 (Uxk-j) 0 (ik 0 (x Zd 0 TL 15I) y
(10) ix i(xk-xj

"3- [ 0 (yJ-7k) 0 (%-7j) 0 (yx-yj) xty (Xkxj y ] (16
" 0" 1 i 0Y (xYi) 

0 (xi-xk) 1

4 hKX) -j % 0 (X-j 'Vk P,

4... I x (y0y i-) (xkx-).

L'?k fjy Ck y-i
. kx i j yJ"

Substitute eq. (3), (4), (5) into (10) and get: 0 (xj-xi) (yi-y

ex yj-yk) 0 (yky) 0 (yiyj) 0 a, and in compact notation: ' .
•0 (.%-j) 0 (z- o ) 0 (Xj-) I 1 F - T * Z (17) .

(k-hj) (yJ-Yk) (X-k) ( k-'i) (XjK) (y 'yj) I j (11) f..:: .
" Now substitute eq. (12) into (15) and (15)

into (17) to get:

'k: F =T f * E1 * Tue *. (18)

Next examine eq. (11) and note that T is the

transpose of T in eq. (16) except for the
- .: ;I n c o m p a c t f o r m : a n 1f H e n c e-.', ' ~ and 1L. Hence '.',-

=e *u (12) 1 TE T u : T = TT"'--"

where ue D

E strain vector Tof =2T

T - transformation matrix, deformation to and if E1 is written as:

- u = displacement vector E1 = * E
*2 2'::. ~~~1-u2 ,..:u..

* -.' The relation between strain and stress from
elastic theory is, for plane stress: then eq. (18) can be written as:

S[ F T * E2 u (19)

•1 1y (13) 2(1-0
0 2(+ Note that eq. (19) presumes a unit thickness

'ju 2(1+u)1  TT uLx- of plate. To account for plate thickness other - .
E 

%in which E - Young's modulus than unity, the factor must be changed
2(1-cu -Yug' odls 2)

- Poisson's ratio .
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Et.. . °

. to 2t Then the terms betweenFand u , , u, w u '

2(1-p) Tja __ ..' .. - -

0... constitute the stiffness matrix for the general --- 2 .- o'-c/ ? -- l -
" triangular element in plane stress. + f - -.- /2 +C1? 0 o -d-b/2

44 +c/. sa? - 0 -al?
a.?r+(I-p)/r +b f db2-1 0 9t

•.K Et ,1, * E * T'  (20) b..2/r.(,-p)r -- . -/2 e-a? 4 -C-
2 D 2o-.1 , ,-/; 4.o - ? -a_-i5 -*

2(-I d-Ir-(oprZl2 symetri *b -f ,-!d-b/2"

I It is worthwhile to note that for a particular e.r-(-p)/2r i , -__ c

material, E and V are constants, that .(-3)/,

1* T T I\I ± - S2

T * T is dimensionless, and that the only p-Poisson's ratio

dimension dependent factor in eq. (20) is t. a k - * A X

, The expansion of eq. (20) follovs. Fig.4 Stiffness Matrix for Rectangular Element

ui uj U, O 'Vf THE RECTANGULAR ELEMENT AS SUM OF FOUR TRIANGLES

-. h~g -6q~s-0p ..a fgq.eh4.dh.cgq -dgq-nhp

""j~' l.b:qf ,,1- chq-dgp effd hThe anomaly of constraint on strain in the
!. N'.""'q-f"fdf'C"l " q.Cf j______ matrix of Fig. 4 led to the consideration of a

symmetric./ rectangular element composed of 4 triangles as

7- .deq -,dsdp shown in Fig. 5.

" p-Poy.e1;'n ratio ,

0/2*

Fig.? Stiffness Matrix for General Triangular Eleent 2

7 *0 .

-" THE RECTANGULAR ELEMENT AS SUM OF TWO TRIANGLES -

With the expanded element stiffness matrix .-
of Fig. 2, it is now feasible to put together -

the stiffness for a rectangular element either: *

I'"- - - > (a) Fig.5 Rectangular Element from 4 Triangles

* '._0" . - The assembly of a stiffness matrix from

/" these 4 triangles would lead to a lOxlO matrix
when only an 8x8 was wanted. Stiffness reduc-
tion from 10 to 8 is easy, if done numerically

SI by computer, but that would not produce a
f general stiffness matrix in algebraic terms. .'\

I , ... To use rectangular elements in shear walls and ON

"-' floors which were to be added to rectangular
01 / */ beam-column frames would require an algebraic

• statement of the stiffness for general use.

k The matrix reduction was accomplished by a
combination of hand work and computer work by

Fig.3 Rectangular Element from 2 Triangles representing matrix elements by prime numbers
and verifying the hand work in the computer.

Results are shown in Fig. 6 and 7.
The two different forms of composition, 3(a)
and 3(b), give diagonal elements that are Z
identical, but the off-diagonal elements

_ differ in sign and in P3 and P. If the sum of 0
K3  and K 3. is formed and divided by 2, the
resulting stiffness looks right, satisfies

. statics, and seems generally acceptable (see
Fig. 4). However, there is an anomaly of
constraint on strain within the rectangle %

because of the superposition of two different . ..
solutions.
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Th mari of~. S Fig 7 give a smlersifns

Ui Ve U
1  

V1 uh V
0  

U4  "I U.V for terectangular element than the matrix of

.a -e . - 0 - A *f- c Fig. 4, and so would be a smaller estimate for
*~b +fr -i 0 0 f -d ,c -b combination with a rectangular frame, both with

+b +f _4 0 0 -0 -b E t lementsare readilycaultdith coper
-. a.2r+(1-p)/r F41-p'and the elements of the upper triangle (numbered

b_2/r:(iop)r sequentially by rows) have been computed for a. -

C.I+P . rA ; L ::+ -- :;T--c- "fane ofvalues of P, = andP-0..Th
aywoetric 1~ 411 c -~-ia

d-/-1-/ +b - breut r listed in the appendix and need only
e-r-I-p/2rto bemultiplied by Et/3.64 to be used for a

f-(13p)/ +0specficapplication.

4 Since, except for t, the element stiffness
matrix is dimensionless, it was desirable to

Stiffess s 10i 10investigate the effect of subdivision of a

single rectangular element into various numbers
of sub-elements. Conventional wisdom would

01 ~: ', j~have it that the larger the number of sub-
--l - i v u* V. V elements, the better (more precise) the repre-

b/4 .f '-4-b/A' d02-/ r.-b/4; the non-dimensionality of the stiffness? To%
-0-4. Uo/a o/. ,o'/4ao study this, a stiffness compilation was made for
.3o/ -12 -/4 1 4, 9, 16, 36 and 64 elements of Identical

+ 0'/4a1 -00 shape, as shown in Fig. 9. The compiled stiff--.
-3b/4. +f - -0/?c1 -b/4 I nesses were then reduced to 8x8 (the corner

*b.2/r.(l-p)r 43/ -c/ +e- -1 41t-P7 coordinates) by stiffness condensation.
c-I,, 'c/b -1."70 -f 0' I

f.l3p/ -0/b 4 9] 15 24 35 48 63

P.Poisson's ratio /4b/3 81A4 5 0 6
___O 5 6 7 14 23 3 47 62

Pig.7 Rectangular 10 x 10 Stiffness Reduced to 8 x 634 7
10 11 12 13 22 33 46 61
17 18 19 20 21 32 45 60

126 27 28 29 30 31 44 59

The 8x8 stiffness of Fig. 7 differs signifi- 37 38 39 40 41 42 43 58
cantly from the 8x8 of Fig. 4, with the diagonal 50 51 52 53 54 55 56 571
elements of the latter all larger and the off
diagonal elements mixed. The difference, Fig.9 Successive Assembly Plan
Fig. 7-Fig. 4 in abc terms is:

~, v 0, ~, o v* ereThe results of this assembly and reduction

1-0/4b 0 .1/4. 0 - /4b 0 .0/4b0

.5/4 .5/4 0 .0Table 1. Comparative Stiffness of Successively
44. a b/4 0 -cb/4 ! :.b/4 Greater Number of Elements

.0l/4 - 0a C114A.

.oV'/O -0'/4b; Number x y x + y A-
b/A 0 b/ 0:./4Elements Stiffness Stiffness

*-2*(1p) '1:4&4' .0c'/4.. :c/s F t (el 1,1) (el 2,2) ____-

cl;p rZ - 1/ 0 -/4b 0 1 2.400 4.300 6.700
L.0/0b /4

.ywri /4. 0 b/ 4 1.263 2.154 3.417

-9/ 0.950 1.466 2.416 ~
T-A 16 0.803 1.129 1.932

-~36 0.660 10.806 1.4660

Fig.$ Dfference Watrix, Fig.? - ig.4 64 0.587 0.654 1.241J

As may be seen in Table 1, the stiffness gets
continuously smaller as the number of elements

W V W W _.



increases, just as if there were some dimen-
sional effect. This was puzzling for a while, .-

until it was realized that the stiffness con- - - .

densation process frees the nodes which are ..-

condensed out, from any constraint other than
that supplied by attached structure. Hence,/

*the edge nodes which were constrained to lieX.
in a straight line may now lie on a segmented/-
line, making the assembly more flexible. In .

the limit, it would be akin to pulling on a -* .

4,membrane at the corners. L4

held initial
~fast coxistraint uxgt i~p. (b) Triangular Elements

- ---1 Fig.11 Wall with Window .

/ With a window, the interior nodes can be

Iafter condensed out before further assembly, which
condensing helps on the size and cost of computation. A

I doorway, on the otherhand, must have its bot-
I tom nodes preserved until after assembly into0

I / constraining structure.

held \.---

___ ~~fast -/1-.

Fig.1O Effect of Condensation

-. The foregoing reasoning leads to the con-
clusion that if a shear wall (or floor) is to

* ~be joined to a rectangular frame, with analyt- .

* ic nodes at the corners and beams and columns
constraining the edges, then a single rec-

*tangular element is a better representation Fig. 12 Wall with Doorway
of the shear wall than is an assembly of rec-
tangular elements condensed into an 8x8 of

crecoriae.When a doorway is repeated for several *\\

* WALLS WITH OPENINGS floors, a combination of triangular and rec- .

tangular elements may be convenient.

In a real-life structure, some shear walls
can be solid and some must have openings of _ _ _ _ _ _ _ _

such size that their effect must be included A
in the analysis. It would be tempting to model -

a wall with a window as an assembly of rec- TICI
%tangular elements and condense out all but the I

4.. corner coordinates as in Fig. lla. This would- 04

be all right for the nodes around the window, ,.-.\/' '

but the 8 non-corner edge nodes cannot be con-
densed out until after they have been assembled
into any constraining structure which joins- .- 0
by using triangles which have no nodes along \.. /

the edges, as in Fig. llb.

V %

F.13 wall with Repeated Door

(a) Rectangular Elements
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A note of caution is appropriate here, to

point out that the constraints on strain dis-
tribution implicit in the division of a rec-
tangular wall into triangles, make the result- U/ v

i  
U' k uk "

ing stiffnesses very shape sensitive. Long, *2 3 "I 2 *-./6 -1 -/3 *c/2 *-a/6 .f
narrow triangles, as in the upper part of Fig. .2b/3 . -d-b/6 *c/2 -b/3I -f -- /6O-

-t -./ .. c./._,2
12 are to be avoided wherever possible, just as 2r.0-p)/ " -/6 -t -/3 -c 12

s-b/ 1-),f 7__ ______/5 _ tin any triangulation problem. The more nearly 2/-(0p)r * 2 , -Cl" A-/6 /-- .
equilateral the triangle is, the more precisely .2o 0/; 2 b/ 6 -f/6
determined it is trigonometrically, and the same .I2(b/)3l 4 -6o .Ib/6
is true of its stiffness. It would be better to ,.(1-p)l2 . ./- *. /.

introduce more interior nodes and condense them f(I-3p)/2

out later in order to avoid long, narrow tri- p Uol..on,, ratio
angles. ng.14 Stiffness Matrix for Rctarular El-.t -

from Prtea..i* kl

THE RECTANGULAR ELEMENT PER ARGYRIS-
PRZEMIENIECKI

A source was found in the literature*,
which presented the stiffness for a rectangular uj k u. vi uk v, V I  v

element in a form which could be adapted for .a/3 0 -a/3 0 - '/ 0 -a/ 0 O
frame analysis. This stiffness was developed +b/3 0 b/3 0 1b/3 0 -b/3
from the application of Castigliano's Theorem /
to the total strain energy of the element under M /3 o 0 .a/3 0

an assumed constant-stress, linear-strain a-2r+(1-p)/r +b/3 0 -b3 0 _.b/3_ E " "
+a/3 0 .a/5 0

variation condition, characterized by: b-2/r+(1-p)r syetric ob/3 0 -/3 .
"

U = C + c 2 n + c 3 n + c4  p-Pisson's ratio - 03

y 5  + c6 n + c7n + c 8  pig.15 Difference Matrix. Pig.4 - Pic.14

in which

E .- u, U V 31 a, v

obI b/I? 0 ob/12 0 -b/12
.c'/U j .c~4sj -G'/4a .02/4.

The displacement distribution is represented by -- 11/- 00 !./12 0
a second-degree surface, in which the variation [/0. .0 /0 i-c'/4b
of displacement in the direction of or n is -- - /? o-".linear for constant values of & or n. The • ?r*(1 p)/r _WAR4 +e14 a -I t
resulting stiffness matrix (transformed into b-2/r,(1-pr -1o -1 I O -a 4"p

1
*,.

a form consistent with Fig. 7) is shown in c..p L b'/O a-/O
Fig. 14, and it satisfies statics and symmetry, r-;/; s.ymttri / 2 0 -b/12
just as did the matrices of Fig. 4 and Fig. 7. I°'1*son rati .0/4a 1
The main diagonal elements of Fig. 14 are ,/12 0

smaller than Fig. 4 and larger than Fig. 7, -0/0
showing that the implicit constraints on strain I b/I '
lie between those of Fig. 4 and Fig. 7. The ..C'/45

differences, Fig. 4-Fig. 14, and Fig. 7-Fig. 14, F1g.16 Differmee latrix. Pic.?- Pic.14
are shown in Fig. 15 and Fig. 16, respectively.

The similarity in pattern of the matrix elements
* between Fig. 7, Fig. 15, and Fig. 16 is inter-

eating, and demonstrates that the formulation of '.
the various -mtrices is consistent. To evaluate the importance of the differ-

ence between the matrices of Fig. 7 and Fig. 14,
the calculation shown in Table 2 was made.

*Theory of Matrix Structural Analysis, T. S. ,.. 4

Przemieniecki, McGraw-Hill, 1968, p. 94.

%I

'r. 141 %I ,-

.%. . . . .. ..

" - : ? -U UU UU _ _ _ _ _

%.-.. %.'. N -e-
%.%--- e- q_" ." I -

% % %,--,--.-,-, - . ,z .,--,.,'_'_*.,...:e: ,'-".:" ".,"."-.."'':.'"..''?'':.-.:''.'""a-- .. "



APPENDIX
Table 2. Ratio Fig. 16/Fig. 14

A. Condensation
-i 0.30

__________It is frequently desirable to reduce the

1 2 size (number of coordinates) of the problem in
a c 2 order to keep within core size limitations or to

.P 1-2 - Z Ratio reduce the cost of computation. The process is
"2 called "condensation", and is similar to using

.b c 2 a truncated Fourier series in place of the full
12 4 3j bseries, or a selected portion of the modal

matrix instead of the full one. The author
prefers to consider the condensation process as

1.00 0.137 3.600 0.038 a coordinate transformation, as follows: 0

1.25 0.153 3.690 0.041 Consider the dynamic equation

1.50 0.183 3.900 0.047 M + Cx + Kx f f(t) (al)

2.00 0.289 4.500 0.064 in which M = mass matrix, nxn %
C = damping coefficient matrix, nxn

2.50 0.407 5.220 0.078 K = stiffness matrix, nxn 0
x = displacement coordinate vector, nxl

x,x = time derivatives of x

a c d n n .f(t) = force vector time function, nxl". ~~a,b,c are defined in Fig. 14 .,.j."
.S %--- .

P = b/a The Fourier transform of eq. (al) is ..

-wwM+iwC+K) *x(iw) = f(iw) (a2)
It can be seen that the difference between

the matrices of Fig. 7 and Fig. 14 is a small Let
percentage of the main diagonal values in the 2
practical range of values of p. Consequently, Z(iW) = (-W M+iwC+K) W)

whether one uses the formulation of Fig. 7 or
Fig. 14 (or Fig. 4), the effect on the final and call this the "impedance". Then eq. (a2)

stresses would be almost the same, and design becomes

decisions would be also. Z(iw) * x(iU) = f(iu) (a4)

CONCLUSIONS To condense eq. (a4) from dimension n to some
smaller dimension, m, introduce a transformation

For inclusion of the stiffness of a shear matrix, R, of dimension (n-m)xm, such that a new
wall (or floor) into a beam-column frame anal- displacement vector, y, is defined by:

ysis, the author recommends the matrix of Fig. 7
* ~for two reasons:[I p'

[x(iu) ] = [y(iu) ] (

1. It is the smallest of the three matrices, 
R (aW)

-" and should give the least stiffness and
* the lowest frequency. in which x(iw) is size nxl

I = identity matrix, size mxm
• 2. For walls (or floors) with openings, it R - transformation matrix, size (n-m)xm

lends itself most readily to combination y(iw) - transformed vector, size mxl
with triangular elements for a consistent
stiffness representation of the whole wall If the transformation of eq. (a5) is applied to

eq. (a4), and a premultiplication by is "

The stiffnesses of the corner nodes (as in Fig. pe * A

7) may be added directly to the beam-column . :
stiffnesses for those nodes, and the static or T. .
dynamic deflection calculations carried through T 1 1  I 1]R1T.-,
to produce a deformation matrix, u (see Eq. *[z(0)]* *[y(i) *[f(i)] (a6)

(18)). The deformations appropriate to each R IRJ
wall (or floor) panel may be selected from the
total u and used to get stresses in each rec- mxn nXn nxm mxl mxn nxl

tangular element, after restoration to the full % .
deformation set by the reverse condensation and reduction of size has been achieved. When
process. (See Appendix A for a brief treatment responses, y(iw), of the reduced set of coordi-

of the condensation process.) nates to the driving function have been obtained
by solution of eq. (a6), the responses, x(it), " "• .
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of the full set of coordinates are available
through the application of eq. (a5). So eq. 4
(a6) is "forward condensation", and eq. (a5) 1 2 3 4 5 6 7 8
is "reverse condensation". 9 10 11 12 13 14 15

For the zero frequency case, only the 16 17 18 19 20 21

- stiffness remains in eq. (a3), and eq. (a5) 22 23 24 25 26 -
becomes -.. :

*bcessymmetric 27 28 29 30

1 31 32 3.'

" x" = -i~ [! ]  (a7) 34 35x 2" K 22 K 21 36O

in which the matrices have been partitioned Fig.A1 Positions of Element Numbers

"11  12 1 =

SK2 2 X) f2

When the transformation of eq. (a7) is applied
to eq. (a8), the result is

¢.-1 -l "
[K1 I-K 1 2 K2 2 K2 1 ] [y 1 ] = [f-K 1 2 K22 f2 ] (a9) P..

This is the familiar "stiffness condensation".

In the dynamic case, the transformation
matrix, R, should be a selected set of the
modal matrix, if the transformation is to be

orthogonal. Using the modal matrix, however, 4' "
requires the prior solution of the eigenvalue
problem, which is costly. The use of the matrix * '

R =VK ~ K 1ji eq. (aS) has been applied to

dynamic problems with satisfactory results for " -
the lower frequency register. This trans-
formation with stiffness is known as Guyan's
condensation.*

B. Stiffness Coefficient Tables _.

The elements of the upper triangle of the
8x8 stiffness matrix of Fig. 7 were calculated
for a value of 1 - 0.3, and a range of values .
of p from 0.333 to 3.0. The results are listed,
with the element number key shown below. For
rectangular elements without openings, it should
be satisfactory to interpolate in the listing

O for p values not explicitly shown.

", = aspect ratio (see Fig. 4) .
-. '" i-"....-. ..,
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TABLE Al. Stiffness Coefficients for Rectangular Walls or Floors. (multiply by Et/3.64)

Mu RHO EL I EL 2 EL 3 EL 4

1 0.3CCCCO 00 C.33333D CC 0.200720 01 -0.65000C 00 -0.13406C 01 -0,5CCCCD-C1
2 0.3000C0 00 0.34483D 00 0.196980 01 -0.650000 00 -0.128020 01 -0.5CCCCD-01
3 0.3000CD 00 0.35714D 00 0.193 50 01 -0.650000 00 -O.12L92C 01 -0.5CCCO-01
4 0.3000CD CC 0.370370 C0 0.189 40 01 -0.65000C 00 -0.115770 01 -0.SCCCOD-Cl
5 0.3000CD 00 0.38462D 00 0.18647D 01 -0.65000C 0 -0.10954C 01 -0.5CCCOD-01
6 0.3CC0CD 00 C.4CCCCO CC 0.183250 01 -0.65000C 00 -0.10325C 01 -0.5CCCCD-CI
7 0.3COOCD 00 C.416670 00 0.180200 01 -0.650000 00 -0.96869C 00 -0.5CCCCD-01
8 0.3000C 00 0.434780 00 0.17735D 01 -0.650000 00 -0.903960 00 -0.5CC000-01
9 0.3CC0( 00 0.45455D 00 0.17473D 01 -0.650000 00 -0.83818C CC -0.5CCCCD-C1 .""

" 10 0.300000 00 0.476190 CO 0.17236D 01 -0.650000 00 -0.77121C 00 -0.5CCCO-01
11 0.300000 00 C.SCCCCD 00 0.170290 01 -0.65000C 00 -0.70287C 00 -0.5CCCCD-01
12 0.3COOCD 00 C.526320 00 0.168560 01 -0.65000C 00 -0.63298C 00 -0.5CCCOD-01 0
13 0.3000CD 00 0.555560 CC 0.167240 01 -0.650000 00 -0.561300 0C -0.5C00OO-CI

-. 14 0.3CCOCD 00 o.5e824D CC 0.166400 01 -0.6SOOOC 00 -0.487S4C 00 -0.sCCCCO-C1l
15 0.3CCOO 00 0.62500D 00 0.166130 01 -0.650000 O0 -0.411350 00 -0.5CCCCD-C1
16 0.3000C0 00 0.666670 00 0.166560 01 -0.650000 00 -0.332290 OC -0.SCCCOD-01
17 0.3000CD CC 0.714290 CO 0.167840 01 -0.650000 00 -0.24983C CC -C.50CCC0-C"
18 0.3C00CD 00 0.769230 00 0.170170 01 -0.65000C 00 -0.16326C 00 -0.5CC0CD-01
19 0.3000CC 00 0.83333D 00 0.173840 01 -0.650000 00 -0.71713C-01 -0.5CCCOD-01
20 0.3000C0 00 0.909090 00 0.179220 01 -0.650000 00 0.26C004-01 -0.5CC00-01
21 0.3CCOCD 00 C.ICCCCD 01 0.186850 01 -0.65000C 00 0.13148C 00 -0.5CCCCD-CI
22 0.30000D CO 0.11000D 01 0.196400 01 -0.650000 00 0.235970 00 -0.500000-01
23 0.3000CO 00 0.120000 01 0.206890 01 -0.650000 00 0.331050 00 -0.5CCCOO-01 I
24 0.300000 00 C.13C00D 01 0.218130 O -0.65000C 00 0.41871C CC -0.5CCCCD-CI
25 0.3000C0 00 C.14CCCO 01 0.229960 01 -0.65000C 00 0.500420 00 -0.50CCC0"-01
26 0.3COOCD 00 0.150000 01 0.242270 01 -0.650000 00 0.577270 00 -0.5CCCO-0,
27 0.300000 00 0.160000 01 0.25499D 01 -0.650000 00 0.650150 CC -0.5CCCOD-C1
28 0.3CCC(CC00 C.17CCCO 01 0.268030 01 -0.650000 00 0.71971C 0C -05CCCCD-C1
29 0.3000CD 00 0.18C000 01 0.28135D 01 -0.650000 00 0.786520 00 -0.5CCOD-01
30 0.300000 00 0.190000 01 0.294900 01 -0.650000 00 0.851010 00 -0.SCCCO-01
31 0.3CCOCO 00 c.2CCCCO 01 0.3C8650 01 -0.65000C 00 0.91354 00 -0.5CCCCO-C"
32 0.3C00c 00 C.21C00 01 0.322560 01 -0.65000C O 0.97442C 00 -0.5CCCCo-0
33 0.3000C0 00 0.220000 01 0.336610 01 -0.650000 00 0.103390 01 -0.SCOCO-0|
34 0.3000C CO 0.230000 01 0.350790 01 -0.650000 00 0.109210 01 -0.5CCCOD-CI
35 0.3CCC0 00 0.24C000 01 0.365060 01 -0.65000C 00 0.11494C 01 -0. CCCO-C1
36 0.300000 00 0.25C000 01 0.379430 01 -0.650000 00 0.120570 01 -0.5CCOOD-01
37 0.3000CC 00 0.260000 01 0.393870 01 -0.650000 00 0.126130 01 -0.5C0000-01
38 0.3CCOCO 00 C.27CCCO 01 G.408380 01 -0.650000 00 0.13162C 01 -0.5CCCCO-01
39 0.3000CC 00 0.?9CCC 01 0.422950 01 -0.650000 00 0.13705C 01 -O.5CCCCD-CI
40 0.3000CC 00 0.29C000 01 0.437570 01 -0.650000 00 0.142430 01 -0.5CCCOD-0I
41 0.3000CD 00 0.3CC000 C1 0.452230 01 -0.650000 00 0.141770 01 -0.5CCCOD-C.

RHO EL 5 EL 6 EL 7 EL 8 EL 9

1 0.333330 00 -0.759450 CO 0.650000 00 0.927810-01 0.SCCOO-01 0.452230 C,
2 0.344830 CC -0.749850 CC 0.65CC00 00 0.60193C-01 0.50C000-01 0.431570 C-
3 0.357140 00 -0.74079D 00 0.650000 00 0.26508C-01 0.SCOD-01 0.422950 01
4 0.37037D 00 -0.73234D 00 0.65000D 00 -0.839910-02 0.5C 000-01 0.408380 01
5 0.384620 00 -0.724560 C0 0.65C000 00 -0.44673C-01 0.5CCCO0-01 0.393E70 CI
6 0.4COOC0 00 -0.717520 00 0.65000D 00 -0.824810-01 0.5CCOO-01 0.379430 01
7 0.4166D 00 -0.71131D 00 0.650000 00 -0.22020 00 0.500000-01 0.365060 01
8 0.434780 CC -0.706040 CC 0.650000 00 -0.163530 00 0.500000-01 0.3!079D CI
9 0.454550 00 -0.701820 C0 0.65C000 00 -0.207270 00 0.500000-01 0.3366D CI
10 0.476190 00 -0.698790 00 0.650000 00 -0.25359C 00 0.5000OV-01 0.322560 01

* 11 0.5000c0 00 -0.697130 C0 0.65000 00 -0.302870 00 0.5CCOO-01 0.30e650 CI
12 0.52632D CC -C.65702D 00 0.650000 00 -0.35562C 00 0.5CC00r-01 O2S4SCD CI

*13 0.555560 00 -0.69870D 00 0.650000 00 -0.412410 00 0.500000-01 0.28135D 01
14 0.588240 00 -C.702460 00 0.650000 00 -0.474010 00 0.500000-01 0.26803D 01
15 0.62500D 00 -C.708650 00 0.6SCCOO 00 -0.54135C 00 0.5CC000-01 0.25490 01

" 16 0.66667D 00 -0.71771D 00 0.650000 00 -0.615630 00 0.5C00C-01 0.24227D CI
17 0.7142D 00 -0.73017D 00 0.650000 00 -0.698400 00 0.500000-01 0.229960 01
18 0.769230 00 -0.746740 CO 0.650000 00 -0.791730 00 0.5CCCOO-0l 0.21a130 CI
19 0.83333D 00 -C.768290 00 0.650000 00 -0.89838C 00 0.5CCOCC-01 0.2C6890 Cl

* 20 0.90900 00 -0.79600D 00 0.650000 00 -0.102220 01 0.500000-01 0.196400 01
21 0.1000C0 01 -0.831480 CO 0.650000 00 -0.116850 01 0.5CCOO-01 0.18650 CI
22 O.I1COCD 01 -C.872330 00 0.650000 00 -0.132770 01 0.500001-01 0.17Sj20 C.
23 0.12COD 01 -0.91438D 00 0.650000 00 -0.148560 01 0.5000-01 0.173840 01
24 0.1300CD OL -0.957170 00 0.650000 00 -0.164280 01 0.500000-01 0.170170 01
25 0.1400CD 01 -0.1C0040 CI 0.650000 00 -0.179960 0! 0.500000-01 0.167840 C-
26 0.150000 01 -C.104390 01 0.650000 00 -0.195610 01 0.50COOC-01 0.166560 01
27 0.1600CC 01 -0.10876D 01 0.650000 00 -0.211240 01 0.500000-01 0.166130 01
28 0.170000 01 -0.113150 01 0.650000 00 -0.226850 01 0.SCC0O0-01 0.16640D C,
29 0.18CCCD 01 -C.117540 01 C.650000 00 -0.24246C 01 0.5000CC-01 0.16724D CI
30 0.19COCD 01 -0.12194D 01 0.65000D 00 -0.25806C 01 0.SCCOOD-01 0.16856D 01

* 31 0.200000 01 -0.126350 01 0.650000 00 -0.273650 01 0.500000-01 0.130290 01 0
32 0.210000 01 -0.130770 CI 0.65C000 00 -0.289230 01 0.SCCCO-01 0.1 236D C1
33 0.2200CC 01 -C.13521D 01 0.650000 00 -0.304790 01 0.50000C-01 0.174730 01
34 0.23000D 01 -0.139650 01 0.650000 00 -0.320350 01 0.500000-01 0.17735D 1 "
35 0.240000 01 -0.144100 0l 0.650000 00 -0.335900 01 0.500000-01 0.180200 CI
36 0.2500CD 01 -C.148570 CI 0.650000 00 -0.351430 01 0.500000-01 0.183250 Cl
37 0.26000D 01 -0.153050 01 0.650000 00 -0.365950 01 0.50000D-01 0.186470 01
38 0.270000 01 -0.157540 01 0.650000 00 -0.38246C 01 0.50ooc-01 o.189840 01
39 0.2800C0 01 -C.162050 01 0.65 000 00 -0.397950 01 0.500000-01 0'.193350 0l40 0.2900C 01 -0.19657D 01 0.650000 00 -0.11343C 01 0.500000-01 0.*680 , -41 0.3000C 01 -. 1 10 01 0.650000 00 -0.428900 01 0.500000-01 0.2C0720
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RHO EL IC EL 11 EL 12 EL 13 EL 14

1 0.333330 00 0.5C0000-1 -0.428900 01 0.650000 00 -0.17110C 01 -0.SCCCOO-00.344830 00 0.5C0000-01 -0.413430 01 0.650000 00 -0.166570 01 -0.500COD-CI3 0.357140 00 C.5CCCCD-01 -0.3q7950 01 0.65000C 00 -0.16205C 01 -05CCCCO-CI
0.37037D0O0 0.51C000D-01 :0.38246D 01 0.65000C 00 -0.157540 0-:5COO0

0.384620 00 0.5CC00D-01 -0.366950 01 0.650000 00 -0.153050 0 -0.SCCCOD-OI6 0.400000 00 0.500CC0-01 -0.351430 01 0.650000 00 -0.148570 01 -0.5CCCO-O .1 0.41660 00 0.SoOoo-01 -0.33590 01 0.65000C 00 -0.14410C 01 -0.SCCOO-018 0.43478D 00 0.5CCC0-01 -0.320350 01 0.65000C 00 -0.13965C 01 -o.SCCCOC-Cl1 0.,550 00 C.5CCCCD-0, -0.3070 01 0.65000C 00 -0.1321C 01 -0.5C CC-C :10 0.55560 00 0.SCCOOD-01 -0.2230 01 0.650000 00 -0.110770 01 -0.5C00-0114 0.5000 0 0.500OOO-01 -0.2365 0 0.65000C 00 -0.1635C 01 -o.5Coo-01 ;;12 0.526320 00 0.SCOCC-01 -0.258060 01 0.650000 00 -0.12194C 0l -0.SCCCOD-CI13 0.6666 0 CC 0.5(C000-01 -0.242460 01 0.65000C 00 -0.11754 01 -O,5 CCCCD-0114 0.58824D 00 OSO00D-01 -0.22685D 01 0.650000 00 -0.113150 01 -O*5CCCOD0-O! - '-15 0.625030 00 0.5C0000-01 -0.211240 01 0.650000 00 -0.10760 00 -0.5CCC OD-1 CI19 0.666610 C 0SCCCO-01 -0.195610 01 0.65000C 00 -0.p1438C 00 -0.5CCC-C"

20D 0.0000 .COD:0127 1 0600 0 -0433C 00 -:5~ CCcD-01.lN
" 16 0,71429D 01 0.5COOOD-01 -0.17996D 01 0.65000D 00 -010004C 001 -. SCCOOD- 018 0.76923000 0.500000-01 -0.16420 01 0.650000 00 -0.957170 0 -C.5CCC00-0129 0.8333 D 0 C.SCCCCO-01 -0.18560 00 0.65000C 00 -0.91638C 00 -0.5(CCCC-Cl20 0.909090 00 0.5CCCD-01 -0.132770 01 0.65000C 00 -0.87233C 00 -0.5CCCCD-0121 0.10000 01 0.50000D-01 -0.116850 0 0.650000 00 -0.83148C 00 -0.5C000D-0122 0.1 0OCD 01 0.5CCC0D-01 -0.102220 01 0.650000 00 -0.79600001C -C.5(CCO-Cl23 0:120000 01 C.5CC000-01 -0.898380 00 0.650000 00 -0.76865 00 -0.5(CCC0-01 "•24 0.13000 01 05COOOD-01 -0.791730 00 0.65000C 00 -07464C 00 -0.5CCCO-01 O25 0.18000D 01 0,5O0C0-01 -0.698400 00 0.65000C 00 -0.63017C 0C -0.5CCCCO-0126 0.1500D 01 0.5CCCCD-01 -0.615630 00 0.65000C 00 -0.7171C 00 -0.5C0-C.".327 0.16Cooo 0 C.5CCoo-C -0.20737 00 0.65000C 00 -0.70160 00 -o.5(CCc--Cl

34 0.230000 01 0 5C0000-01 -0.463530 00 0.650000 00 -0.70264 00 -0.5CCCOD-Ol

23 0:1800C0 01 0.50000-01 -0.1200 00 0.650000 00 -0.71131c o -0.SCCCC-0l36 0.20ooc 01 0.5CCOCD-01 -0.35o2 00 0.65000C 00 -0.6702C 00 -o.sCCCCo-CI -. -37 0.2600CC 01 0.5CCOo-0 -0.30-01 0.65000C 00 -0.69726 00 -0. C5CCOc-01
38 0.27oco 01 0.5cC 00-0l -0.2377o00 0.650000 00 -0.7012C 00 -0.SCCCOO-Cl
34 0200 1 0.51;00D-01 -0.165390 00 0*650000 00 -0.76047C 00 -O.5CCCCD-Cl"-O,','

39 0.220000 01 0.5COOO0-01 -0.22020 -0 0.650000 00 -0.70179 00 -0.5CCCC0-CI34 0.2C000D 01 C.5CC0D-01 -0.61930-01 0.650000 00 -0.717506 C -0.5CCCCD-Cl3 41 0.20000 01 0.5C000D-01 -0.4270-01 0.65000C 00 -0.72456C 00 -0.50CCCO-0118 0.3000 01 0.54777-01 -0.82071-01 0.65000 00 -0.712 00 -0.5CCCO-Cl3 0.3480 00 0.5200-C1 0.265080-01 0.650000 00 -0.740790-01 -0,C5C00-01.0 0.2500 001 C.3C50 -01 0.601930-01 0.65000C 00 -0.76585- OC -05CCCCO-C141 0.300000 01 0.5CCOOD-01 0.927810-01 0.650000 00 -0.5945 00 -0.5CCCOD-0.
RHO EL 15 EL 16 EL 17 EL 18 EL Vg.. ,.'

0334 00 0.126130 0200720 01 0:65000 00 0.927830-01 -0.5 CCC0-016 0.34480 00 0:1204300 0.196980 01 06500C 00 -0.60193C-0 -0. CC --010.357140 O0 0.134C0 01 0.18335D 01 0.650000 00 0.2650 C-01 -0.5CCCO0-C18 0.37037D o C.13,620 01 0.177350 01 0.6SOOO 00 -0.139910C -0.5cc0OD-019 0.384620 00 C.126130 01 0.186470 01 0.65000 00 -0.44673700 -0.5C CO-016 0.400010 00 0.120570 OL 0.17360 01 0.650000 0 -0.2535900 -0.500C00-C0

11 05000 0 0.154C .170290 01 0.650000 00 -0.82481C 01 -0SCC COD-01

12 0.41660 00 0.81940 01 0.18200 01 0.650000 00 -0.1 202c 00 -OSCCCOD- -1 0.53455 00 0709210 01 0.16734 01 0.650000 O0 -0.163530 00 -0 5£CCO-01S 0.45550 00 0.10339D 01 016473D 01 0.650CC 00 -0.20721C 00 0,CCCO010 0.7610 0 097402 CO 0.172360 01 0.650000 -0.5350 -0CCC-CIC :3D00 0.65000000 C -0.2E CC -SCCcCD-cl* 12 0.5263 0 00 0.520 00 0166560 01 0.650000 00 -0.35562 00 -0osccCO-U1-7 0.2555560 00 0.786520 00 0.167840 01 0.650000 00 -0612100 OC -Co50C0C-0l18 0.78230 00 0.718710 00 o.16640 01 0.65000C 00 -0.47 10 0C -0.5CCCCD-011 0.6250c 00 0.65oo 0o 0.66130 01 0.650000 00 -095,,135D 00 o.5CCcc-01-.17 076660 080 C 0.166560 01 0.650000 00 -0.61630 00 -0.SCC00-012 0.10000 0 02040-01 0.167840 01 0.650000 00 -0.69840 OC -C SCCCC-OC.18 00 692.41871 00 0:170170 01 0.65000C 00 -079173£ 0 0 -05CCCCD-015 0D 0 0 0.782290 o 0.650000 00 -0.17936C 0 -o.50ccco-01
90S 83149D C 0 7920 0 o.650000 00 -0.10,20 001o -c.,cccc-cz

26 O.ICCC C 01 -. 3480 0 C.286250 01 0.650000 00 -0.11685C 01 -0. CCCD-Cl27 0.16000 01 0.260040: 1 o.25640 0 0.650000 0 -0.2327,0 , -0.5000-01

28 0.1700(O0 7 4 7s4 3001 0.26030 01 0.65000C 00 .C.22865C 01 :8 SCOCD-C129 0. 80000 -0.130 00 0.2113 01 0.650000 00 -0.2426 1 :0.5 'C0-01

0 100CD00 -062983 00 0.29900 01 0.65000 00 -0.1806001 -09590000-01
[ 31 0.13CC0O01 -C.16270 0 0.2300 C 0.6500C 00 -0.2765021;O -0.SCCCCO-C1 .-..-

2 0.1400CD 01 -0.77121D00 02256001 0.6500CC 0 -0.28926 01 -0.5CCCO--0123 0.0 S Oj 0.338180 00 034220 01 0.650000 00 -0.304 10 01 -0.SCCCOD-013" .021 0-006500 C 0.3099D O 0.650000 00 -0.2 0 Cl -0C(0000-Cl S -.-.

35 0.2400(0 01 -0.968650 00 0.365060 01 0.650 0 00 -0*22350 Cl !05CC 0-Cl

36 o.2500 0 -0.1032501 0o.21930 01 0.650000 00 -0.22543 0.2600CC 0 - 9 01 0:39380 01 0.6500o0 00 -0.260 01-0.5ccc00-0138 027CC 01 - 7028.170 01 0.308650 01 0.6500 00 -0.27365C 01 -0,SCCCCD-Cl32 0:2800C 0 -077121D 0.322560 01 0.6500C 00 -0.38923C 01 -0.5CCCCD-01
33 0.220000 31 -0:838180 800 03366 D 01 0.650000 00 -0o304790 O -OSCCCCD-0O.- --COM 0a300 -0 903960 0,3S07901 O! 065000 0O0 -0,320351 -0.1OSCDO .'.'.35 0,24CC00 -O-6869D 00 0,365060 01 0:65000C0O0 -0.33590£O -O.5 C 0Cl .'.'.'.
36 0:25000 0 -0.1 0325D 0337430 01 0.650000 00 -0.45143 01 -0 SCCCOD-01
37 0o60oo 01 -0.09540 0 o.393870 01 600.o 00 -o.3,695o 0.,££000C-c C":'::'I:38 0.,00 0 0 -0.157,0 O 0.408380 01 .065000C; 00 -0.38246C; 01 -0.5,cCCC-C3, o20,0 0!! , 0.422,5 01 0.6500C OD -0.397950 01 :0.5 CCC-0,900 o2o01 12 -.2020 Oft 0.43 570 Of 0-500...-:143:1 5COO0
41 0.3000C 01 -0.134060 0 0.452230 0 0.65000C 00 -0..o429C 01 -0.5...00-CI
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RH) EL 20 EL 21 EL 22 EL 23 EL 24

I 0.333330 00 -0.759450 CC -0.650000 00 0.452230 01 0.50000C-0l 0.147770 CI0.34483D 00 -¢.749850 00 -0.65C000 00 0.437570 01 0.0SCCOC-01 04142430 Cl3 0.357L40 00 -0.740790 00 -0.650000 00 0.42295C 01 0.500000-01 0.13705D 014 0.37037D C -0.732340 CO -0.650000 00 0.40838C 01 O .SCCCCD-O 0.131620 Cl
5 0.3e462 CC -C.724560 CC -C,65C000 00 0.39387C 01 0.5CC0C-Ol 0.12613C Cl,.6 0.400000 00 -0.71752D 00 _-0 .650000 00 0.379430 01 0.500000-01 0.12057D 01 . ...
7 0.416670 O -0.711310 00 -0.65C000 00 O0 36506C 01 0.5CCOOC-01 0.11494D 01.-. 8 0.434780 00 -0.706040 00 -0.650000 00 0,350790 01 OSCCOOC-O 0.10921D 019 0.454550 00 -C.701820 00 -0.650000 00 0.336610 01 0.50000C-01 0.10339D 0110 0.4761S0 00 -0.698790 CO -0.65000C 00 0.322560 01 0.SCCC0C-01 0.974420 CC11 0.5CCCCO CC -C.697130 CC -0 65CC00 00 0.30865C 01 050CCO C-0I 0.9 354D CC12 0.526320 00 -0.697020 00 -0.650000 00 0.294900 01 0.SCCOOC-01 0.8 1C10 CC S13 0.555560 00 -0.698700 00 -0.650000 00 0.281350 o o.SOCOOC-Ol 0.786520 CC14 0.58824 00C -C.702460 00 -0.650000 00 0.26803C 01 0.SCCOOC-01 0.719710 0015 0.6250C0 CO -0.708650 CO -0.65C00C 00 0.254990 01 0.50CCCC-Ol 0.650150 CC16 0.666670 CC -C.717710 CC -0.65CC00 00 0.24227C 01 0.5CCCCE-01 0.51 27D CC17 0.714290 00 -0.73017D 00 -0.650000 00 0.229960 01 0.SCCOOC-01 0.5CC42D0 0018 0.76923D 00 -0.746740 CO -0.650000 00 O0.218130 01 0.SOCOOC-01 0.418710 CC19 0.83333D 00 -C.7682S0 CO -0.65CCOD 00 0.20689C O 0.5CCCOC-01 0.331C50 CC20 0.909090 00 -0.796CCD 00 -0.65000D 00 0.1956400 01 .SCCOOC-0 0.235970 CC21 O.IO00CD 01 -0.83148D 00 -0.650000 00 0.186850 O 0.50C000-01 0.131480 CO* 22 0.IIOOCO 01 -0.872330 00 -0.65C00D 00 0.179220 01 0.5CCCOC-01 0o2CC4D-CI23 0.1200CC 01 -C.914380 00 -0.650000 00 0.17384C 01 0.50CCCC-01 -0.111130-Cl "24 0.130000 01 -0.95717D 00 -0.65000D 00 0,17017C 01 0.5(000D-01 -0.16326D 00 .'.25 0.1400CD 01 -O.C0040 01 -0.650C00 00 0.167840 01 0o.50C000-01 -0.24983D CC26 0.15000D 01 -C.104390 01 -C.65C000 00 0.16656C 01 0.5CCC-01 -0.33225C CC27 0.160000 01 -C.10876D 01 -0.650000 00 0.15513C 01 0.5CC000-01 -0.41135D CC28 0.1700CD 01 -0.11315D 01 -0.650000 00 0.16640C 01 0.5C0OOC-01 -0.487540 CC29 0.18000 01 -0.11754D 01 -0.65C000 00 0.167240 01 0.5CCOD-01 -0.5f1 OD CC ...30 O.IsCCCO 01 -C.121940 01 -0.650000 00 0.16856C 01 0.5CCOOC-Ol -0.32580 CC31 0.200000 01 -C.12635D 01 -0.650000 00 0.170290 01 0.500000-01 -0.702870 0032 0.2100C0 01 -0.130770 01 -0.65000C 00 0.172360 01 0.50000D-01 -0.771210 CC33 0.2200CC 01 -C.135210 01 -C.65CCOD 00 0.17473C 01 0.5CC000-01 -0.3180 CC34 0.23C000 01 -0.139650 01 '-0.650000 00 0.177350 01 0.5CCOOC-01 -0o9C396D CC35 0.240000 01 -0.144100 01 -0.650000 00 0.18020C 01 0.500000-01 -0.968690 CO36 0.250000 01 -0.148570 01 -0.650000 00 0.183250 01 0.SCCCC-01 -0.103250 Cl37 0.2600CC 01 -0.15305D 01 -0.650000 00 0.186470 O 0.SOCCC-01 -0.109540 0138 0.2700C0 01 -0.157540 01 -0.65000D 00 0.189840 01 0.5000OC-01 -0.115770 0139 0.280000 01 -C.162050 01 -0.65C00 00 O0.193350 O 0.5CCCOC-01 -0.12192D Cl40 0.29C0C0 01 -C.166570 C0 -0.65CC00 00 0.19698C 01 0.50COOC-0i -0.12EC20 Cl41 0.300000 01 -0.171100 01 -0.650000 00 0.20072C O 0.SCCOOC-01 -0.14C60 01

RHO EL 25 EL 26 EL 27 EL 28 EL 29

1 0.333330 00 -C.65C000 00 -0.17110D 01 0.200720 01 -0.65C00 00 -0.134C60 012 0.344830 00 -0.650000 00 -0.166570 01 0.196980 01 -0.65000C 00 -0.12802D 013 0.357140 OC -0.650000 CO -0.162050 01 0.193350 01 -0.65000C 00 -0.12192D CI * '..,.4 0.370370 CC -C.65COOo 00 -0.157540 01 0.18984C 01 -0.650oo OC -0.115170 Cl5 0.38462D 00 -C.6SCO00 00 -0.153050 01 0°186470 01 -0.65000C 00 -0.109540 O16 0.400000 00 -0.65000 00 -0.148570 01 o.18325c 01 -0.65COO 00 -0.103250 01'' 7 0.416610 00 -0.6500C CC -0.144100 01 0.180200 01 -0.65(000 00 -0.96865D C,8 0.434780 00 -0.650000 0 -0.139650 01 0.17735C 01 -0.65CCOO 00 -0.90396D 009 0.454550 00 -0.650000 00 -0.135210 01 0.17473C 01 -0.65C00 0C -0.838180 CO10 0.476190 00 -0.65000D 00 -0.130770 01 0.172360 01 -0.65 000 00 -0.771210 0011 0.50OOCD 00 -0.65000D CO -0.126350 01 0.170290 01 -0.65C000 00 -0.702E70 CC12 0.526320 OC -0.65CCC0 CO -0.121940 01 0.16856C 01 -0.65000£ OC -0.632980 CC13 0.555560 00 -0.65000D 00 -0.11754 01 0.167240 01 -0.650000 OC -0o.51300 CC14 0.588240 00 -C.650000 00 -0.113150 01 0.166400 01 -0.650000 00 -0.48754D0 00
15 0.625000 00 -0.650000 CO -0.108760 1 0.166130 01 -0.6C0 00 -0411350 CC16 0.66667D 00 -C.65CCC0 CO -0.10439D 01 0.166560 01 -0.65C000 OC -0.3322SD CC '17 0.714250 00 -C.65C000 00 -0100040 01 0.16784C 01 -0.650000 00 -0.249830 CC18 0.7690 00 -0.65000D 00 -0957170 00 0.17017C 01 -0.65000C 0 -0.163260 0019 0.8333I0 00 -0.65000 00 -0.914380 00 0.173840 01 -0.6SCOOC CC -0.717130-Cl20 0.909090 00 -C.650000 00 -0.872330 00 0.179220 01 -0.650000 0C 0,26CC40-01 S, 21 0.100000 01 -c.650000 00 -0.831480 00 0.18585C 01 -0.65cO0 00 0.131480 CO22 0.110000 0 -0.650000 CO -0.796000 00 0.196400 O -0.65C000 OC 0.235970 CC23 0.12C000 01 -C.65CCCO CC -0.768290 00 0.20689C 01 -0.65COlC 00 0.331C50 CC24 0.13COC 01 -0.650000 00 -0.746740 00 0.21813C 01 -0.650000 00 0o418710 CC25 0.1400C0 01 -0.650000 00 -0.730170 00 0.2 9960 01 -0.65000C 00 0.5 020 D026 0.1500c0 01 -0.65CCC0 CO -. 17710 o00 o.24227c O -0.650CC O 0. 57270 CC27 O.16COCD 01 -0.65000D 00 -0.708650 00 0.254990 OL -0.65000C 00 O0.65015 028 0.17000D 01 -C.650000 00 -0.702460 00 0.268030 OL -0.650000 00 0 719710 O029 0.1800C0 01 -0.650000 C0 -0.698700 00 0.281350 01 -0.6500CC OC 0.7,6520 CC30 0.19COCO 01 -C.65CCC CC -0.697020 00 0.29490r 01 -0.65000 OC0 0.85C1D CC -"31 0.200000 01 -0.650000 00 -09697130 00 0.308650 01 -0.65CO00 OC 0.91354D 00 632 0.210000 01 -0.650000 00 -0.698790 00 0.322560 O -0.650000 00 0.974420 CC33 0.2200C0 01 -C.6500CC CO -C.701820 00 0.33661C Ot -0.6500COC 00 0.103390 cl. 34 0.230000 01 -0.65C00 00 -oo706040C 0.350790 01 -0.65-000 00 O.02.10 CI.5 0.4000 01 -8.650000 -0.7 11310 0 0.365060 01 -0.6COOC 00 0 .114940 016 U500 C 0 650000 -0717520 00 0.379430 01 -0.65C00C CC 0.12057D Cl ,• 37 0.2600(D 01 -C.650000 00 -0.724560 00 0.393870 O -0.65C000 CC 0.1C2130 Cl
38 0.270000 01 -0.65000D 00 -0.732340 00 0.408380 01 -0.650000 00 0.131620 01 .39 0.28000D 01 -0.650000 CO -0.740790 00 0.422950 01 -0.650000 00 0.13705D Cl 940 0.29CCCO 01 -C.65CCC8 CO -0.749850 00 0.43757F OL -0.65C00C OC 0.14243D CI41 O.3C00CD 01 -0.65000 CO -0.759450 00 0.45213 01 -0.650000 00 0.14770 C
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RHO EL 30 EL 31 EL 32 EL 33 EL 34

I 0.333330 00 -C.5CCOOD-01 0.452230 01 0.50000C-01 -0.428900 01 0.2CC72D 01
2 .34483D 00 -0.5CCOOD-01 0.43757D 01 0.50000C-O -0.41343C 01 0.156980 01
3 0.357140 CC -0.5CCOO-oi 0.42295C 01 0.500000-01 -0.39795C 01 0.1S3350 01
4 0.37037D OC -C.SCCCCD-C1 0.408380 01 0.500000-01 -0.38246C 01 O.IESE 4 C-
5 0.38462D 00 -0.5CCOOD-01 0.393870 01 0.500000-01 -0.366950 01 0,18647D 01
6 0.400000 00 -0.5CCOOD-01 0.37943D 01 0.500000-01 -0.351430 01 0.18325D 01
7 0.416670 00 -C.5CCOOD-01 0.365060 01 0.50000C-01 -0.33590C 01 0.180200 01 -".

8 0.43478D 00 -C.5CCCC0-01 0.35079D 01 0.50000C-01 -0.32035C 01 0.117350 Cl - ,'.
9 0.454550 00 -0.5C0000-01 0.336610 01 0.50000C-01 -0.30479C 01 0.114730 01 .
10 0.476150 00 -0.5(CCC0-01 0.322560 01 0.500000-01 -0.28923C 01 0.11236C Cl
11 0.5COOCD 00 -C.5CCCCD-01 0.308650 01 0.500000-01 -0.273650 01 0.17C290 01
12 0.526320 00 -C.5CCCC-01 0.254900 01 0.500000-01 -0.25806F 01 0.168560 Cl
13 0.55550 00 -C.5CCCOD-OL 0.28135D 01 0.500000-01 -0.24246 01 0.161240 01
S14 0.588240 00 -0.5000D-01 0.268030 01 0.50000C-01 -0.226850 01 0.166400 01

15 0.625000 CC -0.5CCCCO-01 0.254990 01 0.500000-01 -0.211240 0 0.16i30 C-
16 0.666670 00 -0.5CCOC-01 0.242270 01 0.500000-01 -0.195610 01 0.166560 01
17 0.714290 00 -0.5CCOOD-01 0.229960 01 0.50000C-01 -0.179960 01 0.1678640 01
18 0.769230 00 -0.5C0000-01 0.218130 01 0.500000-01 -0.164280 01 0.170170 Cl-*",-" -
19 0.833330 oC -C.5CCCCO-C1 0.20689C 01 0.50000C-O -0.14856C 01 0.113040 Cl
20 0.90909D 00 -0.5CO00D-O 0.11640D 01 0.500000-01 -0.132770 01 0.179220 01
21 0.100000 01 -0.50000-01 0.186850 01 0.500000-01 -0.11685C 01 0.186850 01
22 o.11COCO 01 -0.5CCCCD-01 0.179220 Ot 0.50000C-o -0.10222C 01 0.1564C0 C1
23 0.120000 01 -C.5CCCC-01 0.173840 01 0.500000-01 -0.898380 00 0.206890 01 •
24 0.1300C0 01 -C.5C0000-01 0.170170 01 0.5000OC-Ot -0.79173C 00 0.218130 01
25 0.1400C0 01 -0.5CCCO-C1 0.167840 01 0.500000-01 -0.698400 CC 0 225960 Cl
26 o.SCOCD C -C.SCCCCD-01 0.166560 01 0.500000-01 -0.61563C CC 0.24227D Cl
27 0.16000D 01 -0.5C0000-01 0.166130 01 0.500000-01 -0.54135c 00 0.25490 01 -

28 0.1700c0 01 -0.5CCOOO-01 0.166400 01 0.50000C-01 -0.47401C 00 0.268030 01
29 0.18COCO 01 -C.5CCCC0-01 C.167240 01 o.50oooc-01 -0.41241C oC 0.281350 Cl
30 0.19C0C 01 -C.SCCCCD-01 0.168560 01 0.500000-01 -0.35562C 00 0.2545CD 01
31 0.200000 01 -. 5CCOOD-01 0.170290 01 0.50000C-01 -0.302870 00 0.308650 01
32 0.210000 01 -0.5CO00D-Cl 0.172360 01 0.500000-01 -0.253590 CC 0.32260 Cl ....

?3 0.22CCCD 01 -C.5CCOO-01 0.174730 01 0.500000-01 -0.207270 CC 0.334610 Cl
34 0.230000 01 -0.5C00D-01 0.177350 01 0.500000-01 -0.163530 00 0.35C790 01 0
35 0.24000D 01 -0.5CCOO-Cl 0.180200 01 0.500001C-O -0.122020 OC 0.365060 01•36 0.250C0C 01 -C.5C(CC0-01 0.183250 01 0SC0800C-01 -0.824811"-01 0.319430 Cl '-'

37 0.26CCCD 01 -C.50CCOO-01 0.186470 01 0.500000-01 -0.44673C-01 0.393170 01 - .

38 0.270000 01 -0.5CC000-01 0.18984D 01 0.5000OC-01 -0.839910-02 0.406380 01
39 0.2800C0D 01 -0.5C000D-Cl 0.193350 01 0.50000C-01 0.265080-01 0;422550 Cl -

40 0.2900C0 01 -C.5CCOOD-01 0.196980 01 0.500000-01 0.601932-01 0.437570 01
41 0.300000 01 -0.5CCCD-01 0.200720 01 0.50000C-O 0.927810-01 0.452230 01

RHO EL 35 EL 36

1 0.333330 00 C.65C000 00 0.452230 01
2 0.34483D 00 0.650000 00 0.437570 01
3 0.35714D CO 0.65000D CC 0.42295D 01
4 0.37037D 00 0.65CCCD 00 0.408380 01
5 0.384620 S C 0.65008D000 0.39387D 01
6 0.4000CD 0 0.650000 0.379430 01
7 0.416670 CC C.65CCC0 CO 0.365060 01 .
8 0.43478D 00 C.65CCC0 00 0.350790 01
9 0.454550 00 0.65CCCD 00 0.33661D 01
10 0.47610 00 0.650000 00 0.322560 01
II 0.5000C0 00 0.65000D CO 0.30865D 01
12 0.52632D 00 0.65C000 00 0:294900 01
13 0.555560 00 0.650000 00 0.281350 01
14 0.588240 00 0.650000 CO 0.268030 0t ..

15 0.6250C0 00 c.6sCCCO C0 0.254990 01
16 0.666670 O0 C.65CCCO 00 0.242270 O1
17 0.714290 00 0.65000D 00 0.229960 01
18 0.769230 00 0.650000 CC 0.218130 01
19 0.833330 00 C.65CCO 00 0.206890 01

' 20 0.909050 00 0.65C000 00 0.196400 01
21 o.10o0o 01 0.65000 CC 0.16850 01
22 0.I1COC0 01 c.65cc0 CC 0.179220 01
23 0.120000 01 C.650000 00 0.17384D 01
24 0.13000D 01 0.650000 00 0.170L70 01 - .. % V
25 0.140000 01 0.650000 C0 0.167840 01
26 0.1500CD 01 Co650000 00 0 16656D 01
27 0.160000 01 0.65000D 00 0.16613D 01 -).-'
28 0.1700Co 01 0.65000 CO 0 .166400 01 -
29 o.180c oCl 0C.65000D CC 0.167240 01
30 0.190000 01 0.650000 00 0.168560 01
31 0.200000 01 0.650000 00 0.170290 01
32 0.2100(0 01 C.65000 CO 0.172360 01
33 0.220000 01 0.65C0C0 C0 0.174730 0134 0.23000 01 0.650000 00 0.17735D 01
35 0.7400oo 01 0.650000 CC 0.18020D 01
36 0.250coc 01 c.65C00 00 0.183250 01
37 0.26000D 01 0.650000 00 0.186470 O1
38 0.27000D 01 0.650000 CO 0.189840 01
39 0.28000 01 C.65CCCD CC 0.13350 193
'. 40 0.29COCD 01 C.65CCD 00 0.196980 01

41 03000C0 01 0.650000 00 0.20072D 01
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RAIL OVERTURNING

Freydoon Arbabi
Assistant Professor of Civil Engineering

Michigan Technological University
Houghton, Michigan 49931

-.. ~.... .-'

The number of train accidents has increased in recent years. This
may be partially attributed to the use of high speed trains and
elimination of expansion joints. Derailments are among the signifi-
cant causes of accident and may be caused by overturning of rail. A
better understanding of rail overturning is thus a significant step n.,. "
toward the safe operation and adequate design of the rail system.
This paper is concerned with the identification of the significant
parameters affecting the instability of the rail system and an

* improved method of solution. In the first part, the equations
governing the behavior of the system are set up. Axial loads induced
by a temperature change or braking of locomotives are included in 4 -
the formulation in addition to the vertical and lateral lodds. The
torsional and lateral stiffness of the rail, fasteners and ties are ,
represented by means of springs. A parametric study is performed '-
by a direct variational method to establish the values of the
significant parameters. The finite element method is then applied, • .
using the derived stiffness matrix, to obtain an accurate solution.

INTRODUCTION GOVERNING EQUATIONS

- The number of train accidents has increased For the rail element shown in Figure 1. the
in recent years. This is especially true (1)* x coordinate is taken along the longitudinal *
with track related accidents. In view of the axis of the rail. Thus, the cross-section of
growth in the gross ton-miles transported and the rail is in the y-z plane of the left handed
higher speeds, train accidents can be costly
In terms of damages and human lives. In 1970
alone, reported derailments cost the American
railroads 200 million dollars and led to the
death and injury (2) of over 300 people. The
problem is often aggravated (3) by the loss of
loading of cars carrying hazardous materials.
Derailments are among the most significant

* causes of accidents (4) and are often caused
by rail overturning. The use of high speed In Q
trains results in higher overturning moments,
particularly on curved tracks (5,6). Further-
more, elimination of the expansion Joints can ph
induce, under temperature changes or braking
of locomotives, axial loads that affect (7-13)
the stability of the track. A better under- ZA K2

* standing of the overturning mechanism can )
improve the design and safety of the operation 3
of the railroad systems. FIG. I. RAIL SYSTE M

* Numbers in parentheses refer to the entries ' ,
in the list of references.
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coordinate system. The displacements in the method is utilized. A more accurate
y and z directions are denoted by v and w and solution is provided by the finite
the rotation about the x-axis by a. Because element method which is discussed in a
of the high yield point of the rail material subsequent section.
and the observation that during overturning
the stresses remain below the plastic range, DIRECT METHOD
in the following derivations only elastic
analysis is considered. The Rayleigh - Ritz method is used

The governing equations may be obtained to obtain a solution which is appropri-
either by a direct method or by an energy ate for parametric studies. Assuming
approach. The latter method is adopted here. ",= ',i".'>
The total energy of the system II , is the v = A Sin (&) (2a)
algebraic sum of the elastic energy and the £ l
potential energy of the external loads. The w = B Sin (7x) (2b)
elastic energy is composed (14) of two parts:
the internal energy of the rail, U, and the a = C Sin (X) (2c)
elastic energy of the springs modeling the ties
and the fasteners, Us  where which satisfy the boundary conditions

and introducing relations (2) into
U= I[ EIz(v") 2 + GJ(0') 2 + Er(B") 2 + equations (1), the total potentialenergy is obtained in terms of the un- "
EIy(w") 2  dx (la) known coefficients A, B, and C. The

latter coefficients are then determined
and by minimizing the total energy of the ' .

system. This is done by requiring thatu t K12+K2(v-hO)2 +K3w2 '-....-.
Us = ' [ KB2 + h + w dx the variation of the total potential

(lb) energy must vanish. The coefficients ..N

In the above equations E is the modulus of are obtained as
elasticity, G is the shear modulus, Iy, Iz the
moments of inertia about the y and the z axes. A = (2 H 03 - 6 H 04)/A (3a)
J and r are torsion and warping constants.
K1, K2, and K3 are the torsional, lateral and B = P/(20 2 ) (3b. , .' -
vertical stiffness of the tie and the fasteners. (3-.
h is the distance of the shear center from C = (26 HOl - H 04 )A (3c)

the base of the rail. A prime indicates
derivative with respect to x. The potential where
energies of the axial and lateral loads (14) 4 El2 ---(3d).. are: 01 El K2k NM -"

- * ~~~(3d) ,.-.'-=,
" Vn = "I0 [N(v')2 + 2N(Zo + e) v'W + 43 4 41 . .

N( + X) (,,)2 + N(w,)2] dx (lc) 02 = + (3e)K3R. _-r. (.eF y- 43 4 4.

Vp -1 6(x) [p (ve + e2 + w) + GJi 4  Er i4  K.£

H (v + 5) ] dx (ld) 4. 40.3 4 4

Z, is the z coordinate of the shear center and N w2 eX - Pa (3f)x is a property of the section (14) defined as (1p+ e a
2 24. A. Iy 2

x"2ZoIy- 1A z(y + z)dA (le) N(Z. + e)5
2  K h

04 + 9k +p
N is the axial load, p and H are concentrated 2_ 2
vertical and horizontal loads transmitted by a (3g)
wheel acting at a and 5 from the shear center.,: ,6 is the Dirac function. Ip is the polar A =40,0 -()) (3h) ':I ..,

moment of inertia, A is the area of the cross- 13 (04'2
section of the rail and e the eccentricity of
the axial load from the shear center. The Eqs. 2 then give the displacements and 0
total energy of the system is: rotations at any point along the rail. *-..

Discontinuous elastic foundations can
THis e U + Us + Un + Up (le) be easily handled by the use of Dirac

function. The formulas obtained agree
This expression is used to develop the solution for special cases with the available
to the problem. As a first step in identifying solut ons (14).
the significant parameters a direct variational

tSO ,"~ S,;,..."
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* DERIVATION OF THE STIFFNESS MATRIX W, and v are the displacements in
the y direction at the two ends of the

*A major step in this solution tech- rail segment and v' , v; rotations at
nique is the derivation of the element the same points. SIi relationships
stiffness matrix. Once this is done, can be derived for w and a8. These may :1 i
the stiffness matrix for the overall be obtained by simply replacing v in
system can be obtained and the solution eq. 8a by w or 0 and A by B or C. In-
can be carried out. Using interpola- version of eq. 8a yields.
tion functions.

v i + A x2 + A x3  (4a)A 1 1 0 r1
w=Bi + B2x + B3x

2 + BxO (4b) A3 0 2 1 0 I V'
= Cl+C 2x +C 3 x + C4 x (4c) t9.

to represent the deformations and rota- A4  21-
*. tion within an element the matrix nota- *T - T

tion is adopted to outline the proce- 9 . 9
dure -with T indicating transpose

{}T (1 x2 x3) 5a) or in compact form

{A} =[a]{v} (9a)
1AlT (A A2 A3 A4) *

IT = (Bsimilarly
(BT I B2 B3 B4) fI=a~l(b

{CT = (C cB [l~)(b

7- then - 1 C2 C3 C4) C [J8(c)*.
then Here vector {v} represents the values of v and

v = x}TAI(a its derivatives at both ends of the rail seg-
x~lT fi (6b) ment. {w) and W$ are defined in a similar

w = xTB 6) manner. Substitution of the above equations
6cin the energy expressions for the system -

a x}T(CJ 6 yields T T (}

The derivatives of equations (6) are =<(I WT (}

V = (xo }T(A} (7a) EI2 [L"] 0 0 v

= (x } (7c) EyC" ~ ~

where L + E0 U" I 8
+J

xT =<0 1 2x 3x2>(d(la

and

{x11}T < 0 0 2 6x>Us= v}(wT {T %-

Evaluating v, v, w w,0 and 0' in terms 2 L0Il(v

of the constant parameters (Al, {B) andKw
{C) at both ends of the rail segment, 0~

1~L~ 0 00 1 -K~j (K +h K) VL) (8

V 1I,- 1 A2 

0A

A3
V 1 2t. 312 A4

%. % .
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Un = < {T {w}T {BT> and the element stiffness matrix[K] is the sum
I""of these two items. The element stiffness
I[L'] 0 (Zo+e) [L' {v} matrix is used to form the overall stiffness

T. I ,x FINITE ELEMENT SOLUTION TECHNIQUE .

(Z +e) [L' ex[I (B0 0 * y [L' B) Once the stiffness matrices are obtained
-t where for different elements or subdivision of the

(-T T rail, they are assembled to obtain the
[L] = J[a] (x} {x} [a] dx structural stiffness matrix. The boundary

]T (xl} {x.}T conditions are then imposed and the nodal
f [L'] =Jo'[a]T { x T [a] dx displacements are computed by solving a system

of simultaneous equations. Stresses can be
[L"] = [a]T } xI}T [a] dx determined from these displacements. This0 portion of the solution process is the same as

carrying out the algebra results in for other finite element problems. Since sub-

.X 11 X - l3k stantial bibliography exists on the subject
[L]= 8 l- MO gTu -13T (15, 16) the details will not be given here.

132"2 3l,. for The critical lateral loads are the values
Z3 13X 2  31 X3  for which the determinant of the structural
T 5 420 T- stiffness matrix vanishes. Thus, the critical t

Sym 13 11p.2 values of the loads can be calculated by
Sym- T2 F - increasing their values gradually and calcu-

lating the determinant. When the determinant
122,3  changes its sign the approximate value of the
35 critical loads are obtained. More accurate

results may be obtained by using smaller
IL'I and IL"I are obtained similarly, load increments and starting from the loads
U does not enter in the calculation of calculated at the previous step. A simpler
Re stiffness matrix. The total poten- procedure is to check the diagonal term in-
tial energy is then stead of the determinant. As soon as a

" T"Tdiagonal term becomes negative the process is
ii = < {v} T {w} {}T  > restarted using a smaller load increment. Ref.

17 gives the details of this procedure for " "
[KE] +[KG] ) r{v}1 obtaining the critical load.

w } NUMERICAL RESULTS

The finite element analysis gives accurate
[E] and TrKj are the elastic and geo- information on the behavior of the rail
metric stifTness matrices as given below system. For parametric studies, however, it

might be costly in terms of computer time and
"KE] - data preparation efforts. The variational

method can be used to depict the significance
Elz L"] + 0 -hK of the different parameters and to obtain the

[Ul ] -hK2 [L] appropriate model which would then be analyzed
K2 [L] by the finite element method.

The overturning of a 100 lb. (45.4kg) stan-
0 Ely [L"] + 0 dard rail segment was studied under a set of

K3 [L] concentrated horizontal and vertical loads
+ pplied at the mid-section. The length varied

hK2 [L] 0 GJ IL' J+ Er EL"] from 105 to 420 inches (267 to 1067 cm) with

I- (K1 + h2 K2) [L] the following properties

•.- E = 29000 ksi (2.04 x 106 kg/cm2)
J.GJG = 12000 k~i (0.84 x 10 k/c 2

L  0 (Zo+e) [L'] J = 2.34 in (97.40 cm4
IL'0 r =2.34 in6 (628.4 cm61

-N 0 ELI'1 0 Iy=42.6 ig* (1773.2 p")
Iz= 9.1 in' (378.8 cm'4) 0

(Zo+e) [L' ]  0 (IP eX) [L' Ip = 51.1 In4 (2127 cm4)
T7 K1 = 61 Kips/rad/in (10893 kg/rad/cm)

TO y K2 - 15 ksi (1054 kg/cm2)
K3  29 ksi ' 2039 kg/cm2 )  %

A 0 9.82 in~ (63.36 cm2)
b 3.75 in (9.53 cm) .. ,..
h = 1.625 in (4.13 cm) ;.. A
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Other non-zero values are shown in the
figures. Because of the rather high stiffness 1500 -"3J"

of the rail system, the length of the rail :
segment is a significant parameter and must be. .
chosen such that the effect of the boundary
conditions are not significant at the section 2540 . 0
considered. The axial load commonly caused 10 2W..
by temperature changes or by braking of • -

locomotives was much below the critical axial V 4
* load. Furthermore, the eccentricity of the .'N

axial load did not have a significant effect. 500 0-70
Figures 2 and 3 show the variation of the N=0
rotation at the mid-section of the rail seg- P--
ment with the axial load under a lateral load
of 20 Kips (9090 kg) and a lateral and
vertical load of 40 Kips (18180 kg) each. The 0 100 200 300K
rotation increases due to increases in the 4531 qo,7o 1340o okS-
horizontal and vertical forces. FK.4 N

-A~~FG N__ __

"19 1200

1000

5~ 0

-20K 4
13XA D0 P= 0 fXIO
816.5 -RAD

N=0
- 400 - p=401K

0 50 100 150200K 200
22 S0 4,so r,-740 90320k0 100 200 300K

FIG. 2. N 404 O 40720 134080k3
FIG.5. H

ODNCLUSION
"" 1661 __-_.....___

1661 - The stability of a rail system was examined
against overturning. A variational solution

-,-. Fwas used to study the effect of the different
Rparameters affecting the stability. TheRAID H=4K derivation of the stiffness matrix and a finite

1. P=40 K element solution technique were then discussed.1657 The variational method was used to establishI-the values of parameters for which the accurate
_6 5 solution could be obtained by the finite

05 I00 200 300 400K element method.
451oo 9o320 13s4o 3So4 80.34M

FIG.3. N r

The variation of the lateral displacement with o
respect to the horizontal force is shown in 0
Fig. 4. The lateral displacement directly
increases with the horizontal force. The effect
of the lateral load on the rotation is shown in
Fig. 5. For small values of horizontal loads
the relationship is almost linear. For higher .
values of horizontal load the rotation
increases very rapidly.
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SYSTEMS IDENTIFICATION

APPLICATION OF MODERN PARAMETER ESTIMATION

METHODS TO VIBRATING STRUCTURES

, r'. . "

William R. Wells
Wright State University •

Dayton, Ohio

The application of modern parameter estimation methods to the problem of
identifying the mass, stiffness, and dampinq matrices of vibrating "
systems is discussed. In particular, emphasis is given to the use of r ;
the combined disciplines of estimation and optimal control theory in the
design of forcing functions for efficient system parameter extraction.
Numerical results are presented for the case of a vibrating spring-mass-
damper system.

INTRODUCTION represented by equation (1), the n second order -
equations (1) are transformed into 2n first

Hart [1] has investigated via least squares order equations having the matrix form
and regression methods, the identification of -
the natural periods of vibration associated with M x(t) + G x(t) = u(t) (2)

high rise buildings. Wells [2] has applied the
Newton-Raphson algorithm to the identification where - '
of the stiffness constant in a simple vibrating , T T t T
system. However, the wide applicability of x(t) = [q (t) q (t1 (3)
current parameter identification techniques has T oT T
not been addressed to the more general problem u(t) = EQ (t) :0)
of improvement in sensor design and data proces-
sing for more complicated systems. In addition, are the 2n-dimensional state vector and associ-
further improvement in structural system model- ated generalized input vector, respectively, and
ing may be forthcoming by combining the disci--0
plines of modern optimal control theory and m [m;
identification to achieve more efficient input [Ifunctions in vibration testing. [31 - [5] M =r" "( G - (4) :...,

A typical design problem is to choose the L
forcing input which sufficiently excites the are 2n x 2n "inertia and stiffness matrices",
modes of vibration to allow for reliable esti- resp xine rsi
mates of the physical parameters. One means of
achieving this is to maximize the trace of the Finally, the system dynamics are written as 0
information matrix which arises in the esti-,.,..y.a..
mation formulation. x = fix, p) +g(p) u (5)

PROBLEM FORMULATION where

The equations for the forced small motions fix, p = -M"I Gx , g(p) = M I  (6)
of a vibrating sy stem can be w ritten in conven- 

" -")-'x-" "

tional form as [6J are denoted as explicit functions of the system S
m... q~)+c ()+ ~)= )( parameter vector p to be estimated. The system
,.m 4(t) + c (t) + k q(t) = Q(t) () output or measurement from which the vector p

w m a k t a a gis to be extracted is assumed to consist of thei.., where m, c, and k are the mass, damping and "%

system state components and a gausssan whitestiffness matrices respectively. Since system syite stat et an a g a anchit
identification is generally performed in state nsdo',. space instead of configuration space as (7) X v "7spacasy=x+v(7

O
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and with initial conditions

E[v(ti)] - 0 , E[v(ti) v(t = Rdij (8) ax1 (to ) = 0 (I-1,2,...2n ; j 1,2, ...m)

Further the initial and final times are consid- aP(14) 0

ered known and fixed and the input amplitude and
may or may not be constrained according to

ui < , 1 .2...r) (9) v(ti) = y(ti) - x(po, ti) (15)

The asymptotic value of the covariance of the
MAXIMUM LIKELIHOOD ESTIMATION error in the estimate is

The popularity of the maximum likelihood
estimate lies in the fact that it gives asymp- - T1  ..
totically unbiased minimum variance estimates E [(p - p) (p - p

-
) -"

of the unknown parameters; that is, it results (16) .
* ~in an unbiased estimate with variance whichrN-

approaches the Cramer-Rao lower bound as the T+7
data record increases without bound. In case A (ti)R )A(ti)]
of negligible process noise, the method simpli- =l
fies to the modified Newton-Raphson method and L

hein the case of negligible measurement noise, which is the Cramer-Rao lower bound on the co- , .
the method simplifies to the weighted least vrac fteetmt o h aeo'- ~variance of the estimate for the case of N "'",

squares method. discrete measurements. J-. ,

The likelihood function to be maximized is OPTIMAL INPUT DESIGN'.* taken as

In addition to the state equation expressed
N by equation (15), it will prove useful to intro-

"l Rduce additional state variables defined by the e
Lep, 1 1  2 elements of the sensitivity matrix and the time

1=1 dependent continuous form of the Cramer-Rao
(1) lower bound matrix which satisfies the equations

. This function can be put into a form convenient
for maximizing if x is expanded in a Taylor's i(t) - C(t) AT(t) R"I A(t) C(t) (17)
series about a nominal guess at po and only
linear terms retained. f ,.'

If L(p, R) is maximized with respect to p and R C(tf) AT(t) R"  A(t) d (18)
the following expressions result Lto ...t, t..18)-

N I This results in an augmented state vector
Po +  - AT(ti)R'IA(ti) X = xT C(l)T C(m)T A(1)T A()TT '

(11) where " -,,.%, .,s*'.

Alt ~i'IV(tl )  C(l) = [C11  
C22' "" T

Li-1~ C(2) [C12 ' C23, Cm-1  m]T

'+'-N c(m) =-",.,_.
(12) m 1(t) (2 Clm

iA(')[ l axl 1  Xl T.

where A is the system sensitivity matrix ax 1  6P2  0

whose elements satisfy A-n)=[ [__ax n xn,.. aXn:

NI p'aP2' rp2  Pm
I T af a af
x 1  axk a (13) The performance index to be minimized for

dt ap ) Wkl axk apj apj the optimal input can now be stated in the
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conventional form as The linearized equations of motion for the
t(X( f~)J u~t), system are.."

J -[X(tf)] + f L[X(t), u(t), t] dt (20) z + (c1 * c2) - (cla c2b) e
+ (k1 + k2)z- (kla - k2 b) e - F(t)

For instance, one might wish to minimize
Individual elements of the trace of the covari-
ance matrix which represent the quality of the le - (ac1 - bc2)z - (cla - c2b) 8
estimate. Another choice might be to minimize kl 2 k 22 '''''
or to reduce a high statistical correlation + (k1 + k2)z + (2 + 0
between various parameters in the system. + (k I

I ILLUSTRATIVE EXAMPLE The corresponding mass, dampinq and stiffness
matrices are. respectively

* .:The system shown in Fig. l(a) can be re- 01
garded as an idealized mathematical model of an
automobile. The body is a rigid bar with mass ,''-

the springs k, and k2 and dampers c1 and c2

which simulate the suspension system. The body
has a mass moment of inertia I about its center.
The automobile rests on a horizontal table which c[ + c2  (c1a c2b)
can be accelerated vertically by application of F-1
a forcing function Ft at the center of gravity c ="-
of the body. Fig. lb shows a free-body dia- 2(ca- b) c2a +

. gram for the body in a displaced position. The 1 c2  1 c2 ...

.. displacements are the vertical translation z(t)
of the mass center from equilibrium and a rota- and 0
tion e(t) about the mass center.

k + k " (ka b)

(k a- k b) k a + k b1 2.. 1.:2

The state and control vectors are

a b x(t) =z, ;, z, elT , u(t) [F(t), 03T

and the 4 x 4 inertia and stiffness matrices are

0 0 0 I

(a) 0 c1 + c2  -(cla - c2 b)

0 1 (c - c2b) cla 2 + c2b
2

and ,,. -"-"

0' 0 0

position

__ __ __ __ __0-I 0

(b)
0 0 k1 + k2  -(kIa -k 2b)

kl2 k2"-. ,
Fic,. 1 -Vibrating system 0 0 - (k a - k2b) k a2 + k b
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For purposes of data gathering, an accel- The computational aspects of this type
erometer is assumed placed at the body center problem are basically to treat the minimization
of mass to measure z (t) from which z(t) is problem as one of determining the switching
obtained. This gives a scalar measurement history of the resulting bang-bang control law;

that is, consider J to be an explicit function
y z + v of a finite unknown set of constants represent-

ing switching times, T, T2 ... T . The

with covariance R = r. switching times are then determine by a direct
search method of Hooke and Jeeves [7] with .

For this example, the unknown parameter modifications developed by Welsman [8].
vector is taken as

-T Shown in Figure 2 are an initial non-
p - [k, k2, c, c optimal forcing function and the corresponding •

optimal design obtained from the analysis. The -
for which the sensitivity matrix Is correlations between the elements of the para-

meter vector for the two inputs are presented
in Table I. Hioh correlations near unity exist

me between the stiffness coefficients and damping3k coefficients for the non-optimal design. These
I correlations are reduced by about 50 percent in -

the case of the optimal forcing function.

az a az ae
Sak2  " '.-2

A(t) =

Dz Be az Be -

. ac1  ac1  Dc1  ac1

az ae az ae
ac2  ac2  ac2  ac2

.A -,- .
; -. ... ... iS

300'

.0

30 time, sec

-300

Fig. 2(a) Non-optimal excitation "" .

300

r4 -3 6 9 12 15 18 21 time, sec

-300

Fig. 2(b) - Optimal excitation
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CONCLUSIONS 3) Mehra, R.K., "Optimal Inputs for Linear
System Identification", IEEE Transactions

The feasibility of improving upon the esti- on Automatic Control, Vol. AC-i9, No. 3, -
mation of physical parameters by combining the June 1974.
disciplines of modern optimal control theory and
identification has been considered. Numerical 4) Goodwin, G.C., "Input Synthesis for Minimum -

* simulations were performed which suggest high Covariance State and Parameter Estimation".
confidence levels in the predicted values using Electronics Letters, Vol. 5, No. 21,
specially designed input of forcing functions. October 16, 1969.
However, at this time no comparison has been
made to ascertain the relative improvement, if 5) Aoki, M. and Staley, R.M., "On Input Signal
any, over the more conventional sweep test. Synthesis in Parameter Identification",
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TABLE I

Correlation Matrix '

Non-Optimal Exciting Function Optimal Exciting Function

k1  k2  cI  c2  kI  k2  c1  c2 -. -.
_...

k 1.000 -0.841 -0.006 0.020 1.000 -0.437 -0.002 -0.009 k-

2  1.000 -0.108 -0.004 1.000 0.004 -0.002 k2

1.000 -0.862 1.00 -0.484 c,

2  1.000 1.000 C 2

-J.
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ANALYSIS OF VIBRATION RECORDS BY

DATA DEPENDENT SYSTEMS

:\° . ."

Sudhakar M. Pandit
Associate Professor

Department of Mechanical Engineering - .,-,.

Engineering Mechanics
Michigan Technological University '.

Houghton, Michigan 49931 %

The paper outlines a recently developed methodology called ..
Data Dependent Systems (DDS), which provides mathematical
models derived from and dependent upon the recorded or
observed data alone, without requiring an a priori knowl- .
edge of the underlying systems. After summarizing the
concept, basic theorems, and related mathematical results
of DDS, its modeling procedure is given which directly
leads to the differential equations from the descritized 0
vibration records. By means of machine-tool chatter vibra-
tion records, it is shown how the DDS provides smooth and
readily interpretable plots of spectra and autocorrelation,
and gives a complete modal analysis including natural fre-
quency, damping ratio and proportion of power/energy for
each mode. Decomposition of a complex high order system
into simple subsystems to aid the physical identification
and stability assessment is illustrated. The strength and 0
versatility of the methodology is underlined by a brief
survey of its applications in the literature.

INTRODUCTION assumptions and then alter these ,
assumptions so that the resultant model

With the phenomenal advances in provides a response similar to the
instrumentation and data processing in available data. It is impossible to .
recent years, accurately recorded data get meaningful models by such a method
are available in many diverse fields: for many of the present-day complex
Machine-tool chatter or seismic records systems. Then, one has to be satisfied
in engineering and physical sciences, with the qualitative and often decep-
cardiograms or electroencephalograms tive information provided by the char-
(EEG) in biological sciences, and stock acteristics such as autocorrelations or
prices or sales history in business and spectra of the records obtained by suit-
economics are a few typical examples. able instrumentation from the random .
Many of the data sets exhibit a periodic vibration signals [1]. The extensive
or pseudo-periodic behavior, and hence literature on system identification .

'- . may be broadly termed as vibration [e.g. 2] is of little help when the . -
records, or more precisely random vibra- model is unknown.
tion records.

This paper presents a recently
A good understanding of the under- developed methodology called Data De-

lying system useful for design, predic- pendent Systems (DDS) which providestion and control requires a mathematical accurate mathematical models directly ".."

model, which fits the data well and also from the recorded data without re-
describes the system in a physically quiring any other knowledge of the
meaningful way. To get such models by system. Once obtained by feeding the
the existing methods, one has to ideal- data to the available computer routines,
ize the system by some simplifying these models in the form of differential/

161
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difference equations can be used for Our lack of understanding of the
mathematical system analysis, design, physical mechanism givi'.g rise to the
prediction and control in much the same observed data prevents us from formula-
way as the classical models. Moreover, ting the mathematical model. However,
these models also provide smooth quali- the observed data or vibration record
tative plots of characteristics such as fully incorporates this missing knowl-
the autocorrelation function, the spec- edge of the basic mechanism relevant to
trum and the impulse response function, the measured variable. Therefore, a
which are clearer, closer to the true systematic quantitative analysis of the 4.,

ones, and much easier to interpret com- observed data should be able to provide
pared to those obtained by instrumenta- us with this missing knowledge. Then
tion or by statistical estimation and the system equations, which cannot be
time series analysis. derived from the unknown physical mecha-

nism, can now be developed from the ob-
The first section of this paper served data alone. The system as rep-

briefly summarizes the philosophy and resented by these equations derived from
the concept of the DDS. The principal and dependent upon the data, may be
theorems and mathematical results on called as the "Data Dependent System",
which it is founded are given in section (DDS). This concept of obtaining system
2. A modeling procedure based on these equations from the observed data alone
results is outlined in section 3. The was advanced in [4] and later elaborated
salient features of the methodology are and developed with the requisite mathe- *0
illustrated by the analysis of machine- matical formulation in [5].
tool chatter vibration records in sec-
tion 4 and some of its recent applica- The DDS approach uses least square
tions in the literature are reviewed in techniques to fit a series of differ-
section 5. Although this paper is ential/difference equations to the ob-
restricted to single or univariate served data until statistically adequate
records, extensions and suitable refer- approximation is reached. When the data
ences for multivariate records and their gathering procedure is such that the O
application to design, prediction, con- data "truly" reflects the behavior of
trol and optimization are indicated in the underlying physical system, the DDS
section 6. provides its true representation and can

be used for the purposes of system anal-
. 1. Data Dependent Systems ysis in much the same way as the conven-

tional methods. Even when the data is
A quantitative analysis of the such that no such underlying physical

system underlying the observed data re- system can be identified, the DDS models
quires a mathematical model for its can still be used for characterization, .7.
behavior. Usually certain unknown pa- prediction, and control, on the basis of -"
rameters of the model are estimated on an abstract system represented by the "--
the basis of observed data as well as model. The methodology is diagram-
other factors and then the model re- matically represented in Fig. 1.
sponse is used for analysis, prediction,
design and control. The formulation of 2. Basic Mathematical Results
the model requires a rather thorough O
understanding of the system. Based on The DDS approach is founded on two
such an understanding the system is basic theorems. These theorems, to-
idealized and some general laws such as gether with some related results, are
Newton's laws of motion are applied to summarized in this section from [5,6],

* it. This yields a set of, say, dif- wherein their detailed proof may be
ferential equations, which form the found.
mathematical model describing the sys-ADSisnhrtlsocaicn

* tem behavior (3]. ADDS is inherently stochastic in
nature due to the presence of random

Such an approach is often ineffec- influences. For the purpose of mathe-
" tive to deal with the vibration records matical analysis it may be assumed to be

obtained from many of the modern complex stationary over a reasonable length of
systems, typified at the beginning of recorded data, which implies a fixed
the paper. It is not possible to ide- mean and covariance structure. In
alize these systems sufficiently accu- practice these assumptions are not re-
rately to apply some general laws from strictive since non-stationary compo-
physics, mechanics or chemistry. It is nents, if present, can be removed by
also virtually impossible to conjecture sinusoidal, linear, or exponential
general laws about the microscopic or trends.
macroscopic behavior of these systems
which can lead us to the desired mathe- The first question, therefore, is
matical model. what kind of models or equations can be

used to represent such a system. This
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Fig. 1 Diagram of the DDS Methodology

question is answered by the first basic order n and n-i respectively and denoted
theorem called the "Fundamental Theorem" by AM(n,n-l). In particular some of the ~
of stationary stochastic systems (or bi's, i=n-l, n-2, ... , 1, may be zero so
time series). The Fundamental Theorem that we get an AM(nem) model with m :
states that an arbitrary stationary n-l. When all the bi's are zero we get
stochastic system can be represented as a pure Autoregressive model denoted by

* closely as we want by a model AWn.

d nX(t) d n-lX(t) The AM(n,m) models considered above
dn +an-i l - + give the system response in continuous

dt time. However, it is more convenient to
record and analyze the discrete data ob-

+LdX~t) tained from the system, sampled at uni--T-+ ai0X(t) form intervals. It is therefore impor- '.

I tant to know the discrete representation

dnl of such a uniformly sampled system.
=bl Zt + *.This is provided by the Uniform Samplingn-l d n-lTheorem, which states that when an AM(n,

dt (1) M) System is sampled at uniform inter-

+bdZ(t) vals A it can be represented by a sto-
1 dt + ~)chastic difference equation

E[Z(t)] = 0 Xt- Ol~t-i. - 02Xt-2 -

2
E[Z(t)Z(t-u)] = (U)a 0 nX a a ltl

znt-n t 2 t-21

*where Z(t) is the white noise, X(t) is - a (2)0
the system response, E denotes the ex- . n-l t-n+l
pectation operator, 6(u) is the Dirac
delta function,ct0, (Ile **.p-r are E[a,J 0 V-AJ

autoregressive parameters (AR), and bl,
b2, ... , bn..i are moving average (MA) E(t2 .

parameters. The model (1) is called an Eat -k1 = dk aa
Autoregressive Moving average model of
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where 6k is the Kronecker delta which and
is zero for k #0, and one for k =0. n
Equation (2) is called a Uniformly Sam- V =11 (1-1)

"4pled Autoregressive Moving-average model i%~
of order n,m and denoted by USAM(n,m). 1

In the special case when m = 0 it isn
denoted by USAWn. V (-1 nk (Vi 11.)

The parametric relationships be- i,j~'k (8)
tween the two representations AM(n,m) i..

and USAM(n,m) are given by k,,., -

*(1-i0 1B-02B2 - B n) (1-X B)mm-

(3a) R(11) mu bli + +
(1-X B) ... (1-X B)2 n (9)',:-'

% : + bp1+

i.e.nItcnb sow . 4
(1 )kI cnbeshw that for the USAM

ii(n,m) model eq. (2) the inverse function

i i2 < k I dfined by

(3b)

A. A....A k=l,2,...,n = t IjXt. + at (10)
11 12 k~ ) t~.* *

n R~~)R~i.)satisfies

6 Z uP.R1 )-14 = I- 8 1l - e6k.. 1

- em Ikm ' k=1,2,....(1

1) k0 with 10 -l' Ok =0for k >n,

* * /(4)
n v.m =min(k,n-1).

*i,j1 il Good estimates of the IAfunction can '

be obtained by truncating the the in-
O finite series in eq. (10) as

1.= ,2,...,n-1 X~ l 1t-l +12 Xt-2+
(12)

2~+ I X + a
2 az n p t-p t

a V12 i,j=l f or large enough p and then estimating
(5) Ij's by linear least squares method.

(AA 1)Substituting these I- in eq, (11) gne
can get rough estimaies of 0. and e. and

* then the relations (3-4) can be usea to
(Pi. + ii)get the initial estimates of cai and bi. .

*where the bar denotes complex conjugates, The explicit expression for the
1IldL2# ... '11n are the characteristic autocovariance function of an AM(n,m)

*roots of the differential eq. (1), i.e. model is

Dn + n-l + .. +Y(S) =E[X(t)X(t-S)J

= nl0 (6) G n
(D p1 (D- 2 ) ... (D-i) Z Rpi)Rhi.)V.V.

Id1V1 2  i,j=l 1 ) 1J

.4 ~~~ is ~:*
jJ*~ * e(13)

e = i=l,2,...,n ()0
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whereas its Fourier transform, the auto- obtaining AM(n,m) models from a set of
spectrum, is given by uniformly sampled data on a system will-....'

now be described briefly. Since the
2 i l Fundamental Theorem assures us that any

f(W) = z  bm + _(w) stationary stochastic system can be
approximated as closely as we want by"0
an AM(n,n-l), the procedure consists of

+ ... + 112 27t 1(iw)n fitting models of higher and higher or-
der n until statistically adequate fit '4"

+ n~(i)n-l + + 012  is obtained. If the adequate model is .\
n1 "" AM(n,m) with m<n-l, including A(n), this

(14) will be indicated by the corresponding(14) bi parameters close to zero. For prac-

where i=/7 tical as well as theoretical reasons it
is advisable to increase n in steps of

Thespctalmoent.dfiedbytwo, that is, successively fit AM(2n,.The spectral moments defined by 2n-l) models for n=l2,...

"'"k As the available data is in the
wk' form of a discrete set of N observations"q"= 2 f (w) d (15) .-''i::

m2k it is the USAM(n,m) model which is used
for fitting. For each n the form of O
this model is completely determined.
Then the estimates of the parameters

can be evaluated, when they exist, as 0, ... n and b1 , b2 .... bm
can be obtained by a nonlinear least 44-

k squares computer routine which mini-
(l) 2k mizes the sum of squares of at's in the .- p

m - d y (s)] USAM(n,m) model given by eq. (2). The
2k ds2k s=0 required parameters 1, 02, -- , On and

"1 , e2 , ... 8n-1 are set as functions
2 of aO, al ..- an and bl , b2, .... bm

k+l z n by incorporating the relationships (3
= (-1) - E (16) to 9) in the computation.

IV12 i,j=l
The iterative nonlinear least

2k squares routine requires initial values
to start with. These initial values 0

R(1i)R(j)ViVj - can be obtained by substituting the
estimates obtained by eqs. (10-12) as .

discussed in section 2. Once the ini-
It follows from eqs. (13-16) that the tial values are provided the nonlinear
variance least square routine will monitor the ,....

values of ao, al, •'-, an, bl, b2 , -.. ,
bm and the mean U if necessary, until

n the sum of squares of at's is minimized.
m0 = Y(0) = E R(Ni)V. The at's are recursively computed for

i=l 1each set of parameters chosen by the
routine from eq. (2), i.e.(17)

n z at = Xt - Ol t-1 - N...
-R(wj)V., ,

'jl + e1 at_1 + e 2 at_2 +

where each term in the outer summation + a
gives the contribution to the variance +n-lat.n+
or power by the characteristic roof Vi.
It is thus seen that once an AM(n,m) The computation is started from t=n+l
model is known the autospectrum and its and at's for t - n are taken as zero.
moments, important in many applications
dealing with excursions of random vibra- AM(n,n-1) models of higher and
tions, can be immediately obtained by higher order are fitted until the re- •
eqs. (14-16). It should be noted that duction in the minimum sum of squares
for an AM(n,m) model only moments of of at's obtained by increasing n is in-
the order 2k, with k < (n-m), exist, significantly small. The final model ..

is examined to see if some of the bi's
3. Modeling Procedure and the last Oi are close to zero. If

so, then these parameters are dropped
A modeling procedure developed for and the resultant model refitted to see
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if it also gives an adequate fit. and are plotted in Fig. 3. They pro-
Comparing the sum of squares of this vide a qualitative signature of the
model with the AM(n,n-l) model, the vibrations in frequency and time domain
adequate AM(n,m) model can be chosen, respectively. Note that because the

plots are obtained from differential
The statistical significance of equations they are much smoother and 0

the reduction in the sum of squares of easier to interpret compared to those
at's after increasing the number of obtained by instrumentation or by Fast
parameters can be checked by the F- Fourier Transform methods [8]. It can '..
criterion: be shown they are also better in terms

of statistical estimation [5,12,17].

F = (A1  A 0)(N-r) (18) At the lowest speed of 40 RPM, no
sA0  peaks appear in the spectrum and there-

fore the system is highly damped and

where A =sum of squares of the stable. At the medium speed 90 RPM a
model with more parameters high frequency peak appears in the

spectrum and a low frequency peak starts
A, = sum of squares of the developing, signalling the beginning of *.?,

model with less parameters two modes, one at low and the other at
high frequency. It is seen from Table

r = number of parameters in the 1 that the variances yo reduces from
model with more parameters 0.2003 to 0.1244, so that there is a

redistribution of power without any
s = difference in the number significant change in the stability as %

of parameters measured by the amplitude. °" * :-

N = number of observations For the highest speed of 302 RPM,
the power under low as well as high

and F(s,N-r) denotes the F-distribution frequencies increases, as indicated by
* with s and (N-r) degrees of freedom. the increased area under the spectrum,

N If the F-value computed from eq. (18) and also quantified by almost doubling
is larger than that from the F-distri- of Y0 to 0.3849 in Table 1. The low '- -

4' bution table at given probability level frequency component which was not clear
such as 95%, then the model with less at the speed of 90 RPM now becomes
number of parameters is considered in- significant. The autocorrelation also
adequate, otherwise it can be considered exhibits the sinusoidal behavior cor-

as adequate at the same level. Refer- responding to the low frequency peak.
ence may be made to [51 for further de- e..j
tails regarding confidence intervals, Besides a clear signature providing
tolerances, etc. a qualitative picture of the system be-

havior, the DDS also provides precise
4. Illustrative Application to Machine- quantitative indices. This is possible

Tool Chatter because of the analytical expressions
for spectra, transfer function and other

Some of the salient features of the characteristics, directly available from
DDS methodology can be well illustrated the differential equation (1). Some of --. .,-

by analyzing the machine-tool chatter these quantitative features will now be IL
vibration records collected under dif- discussed.
ferent cutting conditions. Three rec- .\ - '
ords of milling machine vibration, such (ii) Vibration modes- The char-as the one shown in Fig. 2, were col- acteristic roots or the eigen-values ofaslected oner sh iferntFig. e2, e ol-the differential equation (1) for the
lected under different speeds; the
experimental set up for these signals respective cases listed in Table 1 im-
is given in [7]. These digitized rec- mediately enable us to identify the dif-

ords were modeled by the method of sec- ferent modes of vibration of the DDS.
tion 3 and the respective models, their The real roots indicate a heavily damped

* parameter values and the characteristic mode corresponding to a first order
roots are shown in Table 1. Some of the system, whereas each complex pair pro-

- qualitative as well as quantitative vides an oscillatory mode. The imagi-
characteristics of the DDS can be ob- nary part of the complex pair gives the

tained from the mathematical results of damped frequency ud of the oscillatory .
section 2 after substituting the ap- mode in radians per unit time. Using
propriate values from Table 1. both the real and imaginary parts, the

natural frequency wn and the damping
iuratio can be easily computed for each,i ~~(i) Spectra and autocorrelationa -,-..

These mode by the standard one-degree-of- .-
~These most commonly used characteristics moebthsanrdn-ereof

mostcomonlyuse chractrisics freedom vibration calculations.of the random vibration records can be
readily obtained from expressions (13-14)
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TABLE 1

MODELS, PARAMETERS AND CHARACTERISTIC ROOTS

Speed 40 RPM 90 RPM 302 RPM .

Model AM(2,1) AM(4,2) AM(6,2)

Param. Roots Param. Roots Param. Roots

Y 0 0.2003 0.1244 0.3849

' 0  0.0086 -8.30 0.4071 1.2896

"1  8.1408 -0.001 3.6592 0.21±iO.063 6.7391 -0.11±iO.20

a 2  9.8210 29.0264

a3  4.8985 -2.22±il.68 13.4388 -1.27±iO.81

1 a4  3.0748 -.

"a 5  0.5026 -0.14±i3.11

. b1  0.6173 1.0537 0.7866

b2  2.1003 2.0615

1.0.. -.

-2.0 ' 5

% 

S

_I".' • .. , . . ,

S"TIE, MILLSECONDS

J. Fig. 2 A Typical Chatter Vibration Record
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At the lowest speed of 40 RPM both frequencies 1.51 and 3.11 rad/millisec
the roots are real so that there are no respectively. Of these the first mode
oscillatory modes. At 90 RPM two os- does not appear as a peak in the spec-
cillatory models appear: one with the trum since the damping ratio is 0.84 .,-.
damped frequency wd = 0.063 rad/milli- but the second one has a damping ratio
sec and the other with wd = 1.68 rad/ of 0.0450 and tends to give a somewhat
millisec. The corresponding natural flat peak at the end of the spectrum
frequencies wn and the damping ratios plot in Fig. 2.
are given in Table 2. It is seen thatsince the damping ratios are as high as (iii) Power/energy decomposition -. .

0.96 and 0.78, these modes do not give by modes - Although the characteristics
distinct peaks in the spectrum of of each mode of vibration become clear
Fig. 3. from the characteristic roots, this

knowledge is not enough to understand -
At the highest speed of 302 RPM an the DDS or the underlying physical sys-

additional oscillatory mode appears and tem, unless the relative contribution . -. *

there are three modes with damped fre- of each mode is known. For example,
quencies wd = 0.20, 0.81 and 3.11 rad/ even if the mode wd = 3.11 at 302 RPM
millisec. It can be seen from Table 2 is quite unstable, no sharp peak appears
that the natural frequency of the first in the spectrum and hence the relative
mode remains unchanged from 90 RPM to unstability of this mode does not seem

* 302 RPM but the damping ratio is now to have much importance. It is there-
0.48 and therefore it provides a low fore necessary to know the relative im-
frequency peak in the spectrum. Re- portance or effect of each mode on the ::,
duction in the damping ratio from 0.96 whole system.
to 0.48 indicates the deterioration in
the stability of the system with in- Such a relative importance can
creasing speed, which is also corrobo- best be measured by the proportion of
rated by increase in the variance y0 . power or energy shared by each mode.

The total power or energy of the vi-
Table 2 shows that the single mode brating signal can be represented by

with wd = 1.68 rad/millisec at 90 RPM, the variance 'y, which is also the area
splits into two modes with wd = 0.81 and under the spectrum, as shown by eq. (15) .- * .
3.11 rad/millisec, and the natural for k=0. Therefore the power or energy .

TABLE 2

VIBRATION MODES, THEIR FREQUENCIES AND % CONTRIBUTION TO POWER/ENERGY

Speed 90 RPM 302 RPM -.-

Mode l Mode 2 Mode l Mode 2 Mode 3 b-.'

Damped Frequency

wd rad./millisec. 0.063 1.68 0.20 0.81 3.11

Natural Frequency e
.W rad./millisec. 0.219 2.784 0.228 1.506 3.113*n

Damping Ratio
0.958 0.784 0.482 0.843 0.045 0

Contribution -'
to Power/Energy 82.04 17.96 85.40 7.54 7.06

.. •. ."
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decomposition of the vibration is pro- optimization and other applications, it
vided by eq. (17). Each term in the is necessary to relate this description
outer sum gives the contribution by the to the physical constituents of the
mode represented by the root Vi. For system from which the data has been col-
real Wi, the term gives the contribution lected. Since it is difficult to di- 0
by the first order mode, for complex Wi rectly conceive of systems represented
we add the contributions of the complex by models such as AM(2,1), AM(4,2) or
conjugate pair to get the contribution AM(6,2) in the present illustration, the
of the corresponding second order mode. physical system identification of the

DDS is facilitated a great deal if it N.
The percentage contribution of each is decomposed into simple first or sec- . .

mode to y9 is given in the last column ond order systems. This can be easily
of Table 2. It is seen that at both the done by starting from the transfer func- -•
speeds about 82 to 85% power is in the tion of the AM(n,m) model and using D- *..

low frequency mode, which therefore operator or Laplace transforms as il-
practically dominates the system. At lustrated in [7,10]. The three models
302 RPM the remaining 15% power is shared for the vibration records can be de-
almost equally by the two high frequency composed as follows:
mode s.

A) 40 RPM - AM(2,1):
(iv) Overall stability - The quan- . :

titative information provided by (ii) (D2+cl1D+a 0 )X(t) = (bID+l)Z(t)
and (iii) enables us to get an overall
index of stability. As in classical is decomposed as
vibrations, the stability of a DDS can
be determined by the characteristic (D+I/T)Xtt) Z' t) -Yt)
roots. A negative real root represents .-)-(- t

a damped first order system and there- (D+I/Tf)Y(t) K X(t)
fore need not be considered for stabil- f
ity analysis. For a complex conjugate
pair either the real part or the damping B) 136 RPM - A1(4,2):
ratio may be taken as index of stability. 1)2-a
The closer it is to zero the more un- (D+a 3D + 2D+a 1 D+ 0)X(t)
stable is that particular mode. However, t. :
the unstability of a mode would not be = (b2D+blD+1)Z(t)
of consequence for the overall system
unless the mode contributes signifi-
cantly to the power. Therefore, it is is decomposed as
best to choose that mode, which has 2
maximum contribution as given by eq. (D2+2lWn D+w2n)X(t) = Z'(t)-Y(t)
(17) and then choose either the real .L"n"'.l

part or the damping ratio of that mode (D2
as the index of overall stability. A nf )t t
more detailed analysis based on static
and dynamic stability can also be per- C) 302 RPM - AM(6,2):
formed as discussed in [9]. (DS+asD+s4+a3D+a2D2+l

It can be seen from Tables 1 and 2 - *

that when the speed is increased from = (bD 2 +bD+l)Z(t)
90 to 302 RPM, the real part of the 2'1
characteristic root with maximum con-
tribution changes from -0.5 to -0.11, is decomposed as
and the damping ratio goes down from 2 2 +2
0.98 to 0.48. Therefore, the overall (D2+ 2 wnD+2n (D+2Wn2+n2) r.
stability reduces, which is also ap- ... '."
parent from the increased variance Y. • X(t) = Z' (t) - Y(t) %..
Note that actually the damping ratio of %
the third mode at 302 RPM is the lowest, (D2+2 fn+2f)Y(t)
= 0.045. But since this mode contri- f.nf nfY.-t.

butes only 7%, its low stability does
not affect the overall system signifi- = (MD + K)X(t)
cantly.

In each of the decomposed pairs,
(v) Decomposition and physical the first equation represents the pri-

system identification - The analysis mary path and the second equation rep- - .,U..
presented above provides a comprehensive resents the feedback path. The block
description of the DDS in both qualita- diagrams for the corresponding transfer
tive and quantitative terms. However, functions are shown in Fig. 4, and the
for the purpose of design, performance constants of the systems are given in

17 .- /...:.,..- .<
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Fig. 4 Block Diagrams of the Decomposed AM Models

Table 3 from reference 171, where addi- their interactions can also be studied
*. '-  tional experimental evidence is given to by these decompositions as illustrated

show that the primary path can be re- in (11]. f"

,-" lated to the cutting process, whereas
the feedback path appears to originate 5. Some Applications in the Literature -
from the machine-tool structure.

Some of the diverse applications of
Once the parameters of the decom- the DDS methodology in the literature

posed subsystems are related to the are listed in this section to illustrate
. physical constituents, their relation to its strength and versatility.

the whole system can be used to deter- ".to
mine the effects of changes in the de- (i) Characterization of grinding ft

sign and to arrive at an optimum design. wheets (12) - Grinding wheel profiles
The characteristics such as the stabil- were modeled adequately by A(2) models
ity of the individual subsystems and and it was shown that the parameters

171 10 '
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wn, C and Yo can be used to quantita- provides the transfer function necessary
tively describe the profile character- for optimal control.
istics useful in grinding.

(vi) Stochastic geometry of .r" -
(ii) Model for the grinding random surfaces [16) - The mathematical

process [13] - An AM(3,1) model was results of section 2, especially ex-
found to adequately describe the ground pression (16) was used to obtain the )r-
metal surfaces. The decomposition dis- properties of random surfaces such as
cussed in section 4 was employed to the density of peaks and summits, dis-
model the grinding process as the cut- tribution of slopes, etc.
ting process in the main path and the
wheel-metal interaction in the feedback (vii) Prediction or forecasting ,
path. and quality control [10] - The well

known technique of exponential smoothing 0
(iii) Study of lathe chatter is shown to be a special case of fore- '""

[9,14] - Chatter vibration signals from casting using AM(2,1) model; this il-
a lathe were used to analyze chatter as lustrates the application of the DDS for . .
random vibration ascertaining its sta- prediction and quality control.
bility. Two of the three vibration
modes were related to the workpiece and (viii) Alias-free estimates of
the cutting tool. spectra [17] - The common problem of

aliasing in spectral estimation can be "
(iv) Machine-tool dynamics [7,11]- avoided by the DDS methodology, which

By modeling the milling machine vibra- therefore provides better plots of .
tion signals collected under actual spectra.
working conditions, it has been shown
that the dynamics of the machine-tool 6. Extensions to Multivariate Records
structure and the cutting process can
be estimated. Although this paper concentrates on

univariate or single records at a time, 0
(v) System identification and the DDS methodology is also applicable

control [15] - Measurements from a to multiple vibration records collected
paper-making process control system for more than one variable. For multi-
were used to identify the dynamics of ple records, X(t) is treated as a multi-
the process and the disturbance. This variate vector of observations at time t

TABLE 3: CHARACTERISTICS OF DECOMPOSED SUBSYSTEMS [7]

Parameters Speed

40 RPM 90 RPM 302 RPM

T sec 152

T f sec 625

Wnl cps 425 491., . "*

0.84 0.06

Wn2 cps 366

0.94 .-

Wnf cps 109 111

0.4 0.3

M -2 -9

K-11 -3 -5
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and the coefficients ai, bi then become [6] S. M. Pandit and S. M. Wu, "Data
matrices in eq. (1). The extensions of Dependent Systems: A New Approach
the mathematical results of section 2 to Manufacturing System Analysis," . .
and the modeling procedure of section 3 Proc. Int'l Conference in Produc-
for the multivariate case are given in tion Engineering, Part I, Tokyo,
[5]. Japan, pp. 82-87, 1974.

The multivariate DDS models pro- [71 F. A. Burney, S. M. Pandit and
vide smooth plots of cross-correlations S. M. Wu, "A Stochastic Approach
and cross-spectra including coherence; to Characterization of Machine
these are extremely useful in design. Tool System Dynamics Under Actual
The multivariate analog of the differ- Working Conditions," Trans. ASME,
ence equation (2) is ideally suited for J. of Engr. for Industry, Vol. 98,
predictions or forecasting and control Series B, pp. 614-619, 1975. •
as illustrated for a blast furnace
operation in [18]. These models are [8] G. M. Jenkins and D. G. Watts,
also useful for identification and anal- Spectral Analysis, Holden-Day,
ysis of closed-loop systems [191 and San Francisco, 1969.
economic forecasting by leading indica-
tors [20]. [9] S. M. Pandit, T. L. Subramanian

and S. M. Wu, "Stability of Random
The multivariate versions of eqs. Vibrations with Special Reference •

- (15-17) can be used for performance to Machine-Tool Chatter," Trans.
+.. • optimization since they provide explicit ASME, J. of Engr. for Industry, ..... ".

expressions for the effect of one vari- Vol. 97, Series B, pp. 216-219,
, able on another. The design implemen- 1974.

ting such optimization can be achieved
by means of the relations to physical [10] S. M. Pandit and S. M. Wu,
constituents obtained by the decompo- "Exponential Smoothing as a
sition similar to the one discussed in Special Case of a Linear Stochastic O
section 4. System," Operations Research, Vol.

22, pp. 868-879, 1974.
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A WME~O OF SYSTEM IDENTIFICATION WITH AN

EXPERIMS91AL INVESTIGATION :

P. H. MERRITT ..- *

Air Farce Weapons Laboratory
Kirtland Air Force Base, New Mexico

and

w. E. BAKER
University of New Mexico
Albuquerque, New Mexico

System Identification is the problem of determining a mathematic _

relationship between the input and output of a system. In this ~Y ~
paper the desired mathematical relationship is a differential eI,
equation which adequately describes a real dynamic system.
This paper develops an approach to the identification problem
and then demonstrates the method by applying it to a real system.
The method is applicable to systems described by ordinary differen-
tial equations, either linear, or nonlinear, and yields explicit
estimates of the coefficients of the equation. Included in the
method is a means of evaluating the form of the differential equa-
tion after the coefficients are determined. 4

The development of the necessary equations is accomiplished ~
by utilizing a simple single degree-of-freedom mechanical spring
mass system as an example. The method requires assuming the form
of a candidate differential equation to start the identification
technique. Once the equation is assumed the analysis is direct
and equations are developed to permit use of the necessary test
data. The solution yields explicit estimates of all unknown
coefficients. The required data is frequency response data such 4~.~

as obtained in a laboratory by sweeping a sinusoidal. forcing
function through a broad frequency range. Specifically the
measurements are the frequency, magnitude, and phase of the input
and output of the system.

* - The paper then demonstrates the technique by applying it to
test data obtained in laboratory tests of a spring-mass system. --.

The springs were rubber and could not be considered as linear . .

elastic components. Three different forms of differential eq- .

uations are hypothesized for this system, the Kelvin model, the
Zener model, and the Duffing equation with nonlinear damping

* added. Utilizing data from vibration tests on this system,
numerical values for the coefficients in each of these differential
equations were computed. The resulting equations were compared,
differences were discussed, and the one which best represented
the test device selected. The technique described permits this
to be done on a rational basis.

The main advantages of the method presented in this paper
*are as follows: it characterizes the system as a differential
7_ equation; it can be applied to nonlinear systems; no initial

estimates of values for the coefficients are required; and it .

utilizes all of the available test data.
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SINTRODUCTION Figure 1 shows the step-by-step procedure for,

l-" ~~the paramtier identification. ,4. %.

The problem of determining a mathematical -
relation to describe the relationship between
the input and output of a system is called
"System Identification." For a dynamic system,
the relationship must be time dependent.
Arnold and Narenda [1] show four different
ways that linear time-invariant systems may Hyothesize
be characterized; these are by the impulse A Model
response, the transfer function, the differen- - -
tial equation, and orthogonal decomposition. Write The Model
In this work, a method of identifying the As An Error

form and coefficients of the differential e I
equation characteriization was developed and
an evaluation made utilizing test data from F,cteonacy,.esponse

an actual dynamic system. OM The Squared Error
With Respec t To .- ' "-

Bellman [2) has done considerable work Unknon Parameters

utilizing the differential equation description a
for dynamic systems, and has developed two
methods, quasilinearization and differential
approximation to identify the equations from Set U res
available data. Quasilinearization is well Matrix
described in the literature [3] [4]. The
differential approximation technique utilizes
a predetermined form of the differential equa- Solve For The
tion to operate on the measured input and Unko w

output signals and form an equation error. .
The integral of the error is minimized with
respect to the parameter being evaluated to Fig. 1 - Parameter Identification
obtain equations that may be solved for the *."-.

parameter. While differential approximation The initial task is to hypothesize the form of ..
has been applied to simulated data with a a differential equation that may represent the
computer study, it has the limitation that system. This task relies on the investigator's
numerical differention is required and this knowledge of the system and the underlying
process limits the accuracy of the results, physics. While this is a large step, and 7

one into which errors will be introduced, sub-
Another method found in the literature sequent steps will expose these errors to per- .

. (7] [9] was to fit the frequency function mit elimination of incorrect or inadequate
with a polynomial in "s", the Laplace variable, forms. The coefficients are carried in the
The main limitation of this method was that equation as unknown variables. The equation is
the approach was only applicable v) linear then used to set up an error function, where the " "
equations. error is defined as the difference between the

forcing function and the dependent variable and __" -
The method developed in this study utiliz- its derivatives. This approach is referred to

ed the initial formulation proposed in the as the "equation error," [6]. This error is
method of differential approximation. The squared and integrated over a time period. The ,
limitation of numerical differentiation was integrated and squared error is then minimized
avoided by utilizing sinusoidal data where with respect to the unknown coefficients. A
explicit equations relate all derivatives of set of integral equations will be obtained at • . . "
the dependent variable. The method was aug- this point. These equations are used with the
mented with a regression equation to permit test data to evaluate the integrals, and the 0
the inclusion of a large amount of test data. resulting algebraic equations are solved using
Finally, a method was developed to evaluate a least-squares approach. Numerical values for
the resulting differential equation for the coefficients are the final result.
accuracy determination and comparison purposes.

Step 2 of the procedure is required to
DEVELOPN EN OF THE IDENTIFICATION evaluate the validity of the originally assumed .1 ,1.-,

METHOD equation and the computed values of the co- 116

efficients. The step-by-step procedure is 0
There are two principal steps in the shown in Figure 2.

identification method, parameter identifica- -. .
tion and residual evaluation. These will
first be described briefly, and then an
example will be presented for clarification.
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Repetition of this process, but considering k as
the variable yields a similar result. Consider-
ing "c" as the variable and repeating this step""gives TIm f1 Udt+c f A dt+ (S)

Identified Input 0 0Pa rameters Data
TTk f x dt- f f(t) ; dt 0

. 0 0

Equations 4 and 5 are now combined with the ex-
SDifferential perimental data.~~Equation ,

In this work a harmonic, or sinusoidal, .
forcing function was used to excite the system. ."-
The advantage of this type of forcing function is

Predicted Measured that it results in a unique and known relation
between the output variable and all its
derivatives, specifically, for acceleration
being the measured output quantity,

= A sin wt (6)

M= -A cos wt (7)

%Fig 2. - Residual Evaluation x =-A sin wot (8)

Quantities called "residuals" are computed. (8
The residuals are defined as the difference W

between the measured output and the output as f(t) F sin (wt + 0) (9)

predicted by the identified differential equa- where w is the frequency of the forcing function .-
tion. The magnitudes of the residuals will
indicate if the hypothesized equation is ade- and 0 is the phase angle between input and out-
quate to describe the system being tested, put, The constants of integration are normally . . -.

*set to zero based on physical constraints.
The method described may be greatly clari-

fied by illustrating its use on a simple example, If equations 6 through 9 are combined with
specifically a second order, time invariant, equation 4 and then with equation 5, and the
non-homogeneous, ordinary differential equation. limits on integral specified as a time interval

covering an integer number of cycles of vibration
m'? + c + k x = f (t = (1) the integrals may be evaluated in closed form.The resulting equations are as follows:

The error model for this equation would be T r l ea n sf o

e - [m IT+c +kx] - [ f (t)] (2) mA - FkA F cos 0 (10)

and if this is squared and integrated over some
time period, the result is cA- =F sin (11)-

fe 2 dt -f [ig + CA + kx - f (t)]I dtf d Since the above equations are valid in any par- %.e__
ticular frequency, and the experimental data may

Equation 3 is next minimized with respect to each be obtained over a broad frequency sweep, the 0
of the unknown coefficients, m, c and k. When problem appears overspecified. However, the
the pkirtial derivative of 3 with respect to m is method developed utilized data at N discrete
determined and equated to zero, and the co- frequencies. In the following development, the
efficients removed from the integrand since they measured quantities will be identified with a
are constants in time, the following equation subscript to specify the frequency, i.e., F.,
is obtained:

F-' "1. A., ando . are the peak force, peak accelerition,

m f V2 dt c f I cVdt (4) ahd phaselangle at w.
0# 0 7 -. -. 17

For use of four test frequencies on a given
x dt f f (t) dt =0 system, the following matrix would be constructed0 0 from equation 10. ""'
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A1  -A1 I n F o €1sketch of the experimental setup is shown in

1 Figure 3.

A 2  -A i i F 2  Co s [2 ] 
W- .

A3 A 3 3 Cos 
-3

I INPUT FORCE FUI (12) ~~FORCE CAIG~IETI CI

ELECTRICAL SIGNAL

A4-A F GsPINIPUNTIONAL TO FORCE .
PIEZOELECTRIC

4 
STEL 

LCTI L SIAL

PRPORTIOAL tO

4 EACH

RUSKIR I SOLA ORS- ACCLRAT ION

4 EACH

or, in matrix shorthand, A x = b (13)

The procedure of least squares is now used to 0
obtain an estimation of x, denoted/k.

= (At A) -1 At b (14) Fig. 3 -Test Item Construction
for the Rubber Isolator ."

A solution to estimate the damping, c, is The i u o-rh e
easily obtained following a similar approach. The instrumentation system for the series of
This completes the first step of the identi- tests on this item is shown as Figure 4. The
fication process as shown in Figure 1. data which were obtained by sweeping the test 0

setup through a frequency range is shown as
The next step is to use the estimated Figures 5 and 6.

values of m, c, and k, insert them into equa-
tion 1 and calculate T and 0 for the .I,44T-O.
measured input levels and frequencies. By EXCI -..
comparing these predicted outputs with the .. - ,
measured outputs it is possible to see if the
equation adequately describes the system. If
not, plots of the residuals over the frequency "-ORM SI" SI.T

range aid in determining the missing terms of
the hypothesized equation, [8].

This method may be utilized for nonlinear
as well as linear equations. If the nonlineari- i"NPI-I FILTH

ties produce harmonics in the output, then the
harmonics may be measured and carried through I W

the minimization scheme, or a describing func- OCCELEMMETEN - °" "
tion approach, which retains only the funda- STE """" .
mental frequencies may be used. This describ- -N __U"--"--
ing function approach was used to develop the AMPLIFIER.FILTER

equations used in the experimental investiga- -.--.. ,
tion that is next described. The experimental
equipment automatically excluded harmonics L,,E'H

by utilizing tracking filters.

EXPERIMENTAL INVESTIGATION OF IDENTIFICATION
METHOD ...

One of the test items used to evaluate the Fig. 4 - Instrumentation for the
identification method consisted of four rubber Rubber Isolator ,.-"vibration isolators supporting a steel cube. A
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In the study of this system, three models
were hypothesized, their coefficients calculat-
ed,, and residuals coppared to demonstrate the
method.

5'-. The first model utilized was a simple
second order equation as described in the
previous section and shown schematically as

401b Figure 7.
301b '

201b

0 *
a 

f(t) P

.5J m%
_j%

51b 
%

1lb k

10 100_______ ________.

FREQUENCY (Hz) Fig. 7 -Kelvin Model

Fig. 5 MeNasured Acceleration Data This model is often called the Kelvin Model,
for Rubber Isolator and the appropriate equation is given in the

previous section as equation 1.

The second model hypothesized for the test
ISO item is shown schematically as Figure 8 and
180 is often referred to as the Zener or relaxation

model.N

ISO

I lb

120 f(t)
11b0 20 5'.

~40

0 

0

50 100 150 200 250

FREQUENCY (liz)

* ~~Fig. 6 - ?jeasured Phase Angles for theFi8.-Znr odlN
Rubber Isolator Tests Fi .-- e oe

S.* 179 
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This model has been suggested to be a good model equations, were as follows:
for a rubber isolator such as utilized here [10]. r0

* The differential equation which describes the Kelvin Mo~del,
* system is as follows:

~ +m (N+l) I+ k x .0077 Tx + 3.57 I+ 1662 x -f (t) (22)
N Zener Model,

f(t) + C f (t) (1).55x10_ 5 T .01 0*+ .55 +l1310 x
-3 1 t (23) . .

f(t) 4* .7x 10 ft
The coefficients were redefined as follows: NnierMdl

a 1  = m .0085r + 3.93 A- .012 13+ 3980 x -

a 2  ' m 2.1 x10 x 3 =f (t) (24)

a3 =where the forcing function is in units of pounds :

(16)(N+1 and the displazement is in inches.

These equations were next utilized to eva-
a4  'k luate the residuals for each model. This was -

4 accomplished by using the measured acceleration
values and the derived velocity and displace-

a5  = c ment values to calculate the input forcing
5 NK function and phase angle. These values were

subtracted from the measured forcing functions
and phase angles to obtain residuals for any .--- ,

The algebraic equations developed for calculat- one force level. Two of these residual plots
ing the values of the coefficients were as are shown as Figures 9 and 10.
follows:6

" A Aa (w F cosO)a5  (17)4

A -A a4 +(wF sin O)a5  0

W(18) ~ 2
F cos 4 . -U'

C .3

The last model used to describe the test
item was a nonlinear equation, which was written_________________
to include nonlinearities for both the damping 20 60 100 140 190
and stiffness coefficients. The differential
equation was postulated as: FREQUENJCY (Hz)

m + c x+ d +k x hx 3 _f (t) (19) .-

The algebraic equations Ihat were derived were: 6

2 -, ~ 2 h FW Cos4 60
2 40h

(20) 4
Va

2- 20 - NONLINEAR
C- A F w sin 4A
4w (21) 0 0

U- -20
The test data shown in Figures 5Sand 6 were

digitized and used with each of the models to -40 '.1

calculate numerical values for the coefficients KELVIN J,\-
in each of the three hypothesized equations. a.-60
Sixteen frequency points across the range from I I I I I I..-%

* Z20to 200 Hz were used for each of the six force I I I I I
levels for a total of 96 measurements. The re- 20 60 100 140 190
sults, expressed utilizing the differential Fig 9. - Residual Plots for Five Pound Force
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, . • ~~~CONCLUS IONS2""" r

A method was developed to permit calculat- -"
ing the coefficients of a hypothesized -""
differential equation using test data. The

15 ZENERmethod was demonstrated by applying it to data
S15 -from a laboratory vibration test. It was

:2i 10, -shown that the method permits evaluating the

10 hypothesized models versus the test data and
5 - NONLINEAR permits comparisons between models. The 1 !

method is considered to be simple to apply and
KELVINshould be applicable to a wide range of

problem.L
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in the physical system with the calculated ' - •
values for the three models. The mass of the 10. Ruzicka, J., and Derby, T., "In-
springs were included by assuming they moved fluence of Damping in Vibration Isolation,"
as if they were pinned at both ends. The Shock and Vibration Monograph Series, the .

resulting difference between measured and Shock and Vibration Information Center,
calculated mass for the nonlinear model was Washington, D. C., 1971.
only 1.2%. For the Kelvin model, the dif-
ference was 8.6% while for the Zener model
the difference was 18%.
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A METHOD FOR THE DIRECT IDENTIFICATION OF VIBRATION

PARAMETERS FROM THE FREE RESPONSE ;...q

S. R. Ibrahim
Department of Mechanical Engineering and Mechanics

Old Dominion University
Norfolk, Virginia

and

- E. C. Mikulcik
Department of Mechanical Engineering,

The University of Calgary,
Calgary, Alberta, Canada -

This paper describes the theory and application of a method which
utilizes the free response of a structure to determine its vibration
parameters.

The time domain free response is digitized and used in a digital com-
puter program to determine the number of modes excited, the natural
frequencies, the damping factors, and the modal vectors. The under-
lying theory is developed, including the basis of the computational
procedures required, as well as the requirements regarding the sam-
pling rate in the digitizing procedure. Consideration is given to the
practical application of the theory. The paper includes the description
of a laboratory experiment in which the method described was used to . "
determine the parameters related to the first three modes of vibration
of a cantilever beam. The technique is also applied to a more complex
generalized payload model previously tested using sine sweep method
and analyzed by NASTRAN. Ten modes of the payload model are
identified.

INTRODUCTION These particular problems encountered
using frequency response methods have led to

The experimental determination of the the consideration of time domain based methods
natural frequencies and modes of structures is in vibration testing. The direct use of time
usually pursued through the application of fre- response information, without transformation to
quency response or other frequency domain the frequency domain, should not necessarily
methods. Many test procedures have been pro- require assumptions about the interference of
posed [1-101 differing in the manner in which modes due to heavy damping or closely spaced . b r
the structure is excited, the quantities which natural frequencies, and would thus eliminate

* are measured, and the manner in which the ex- the necessity for special procedures in these
perimental data are analysed. Analysis of fre- cases. ,
quency domain methods have shown that there
are limits on the degree of damping and the The theory and application of such a time
closeness of natural frequencies, beyond which domain method were presented in [18] and [19].
frequency response methods cannot yield accu- The method involves the use of transient re-: " "' rate information about the vibration param- sponse data in determining the differential
eters (11-14J. These limitations are essentially equations of a lumped parameter model of the

*due to modal interference which can obscure system under test, followed by analysis of the
the separate observation of individual modes mathematical model to determine the vibration
and natural frequencies. Most modal vibration parameters. An alternative time domain tech-
test methods are, then, based on assumptions of nique is described in this paper. This method

_ negligible mode coupling, although some differs from the one noted previously in that,
methods have been introduced to deal with modal here, a mathematical model or differential

.. . Interference [15-17). Special methods, though, equation of the structure is not developed;
have the main disadvantage that it must some- rather, the structure's free response is used
how be determined in advance that special directly in a computational procedure which
attention is, In fact, required. yields the vibration parameters. In both
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methods, either the acceleration, velocity or M, C, and K are nn matrices, while 2 6 andTr ~ ~ ~ ~ ~ ~ ~ ~ ". -difns a vetr.Te ouino

displacement response may be used, but in the x are n-dirensional vectors. The solution of
earlier method it was required that the this equation is assumed to be
recorded response be numerically integrated
twice in the computational procedure, while in x= p e t  (2)
the present case no such integration is neces-
sary. whence

[ M + X C + KP p 0 (3) " "
THEORY -..,,.-,Equation (3) defines 2n values for A, which are

The test procedure described utilises the also the roots of the characteristic equation of
free response of the structure under test. As the system. For each root, there is a corre-
for the previously referenced time domain sponding vector, p, of relative displacements
method I8,19], the free response is generated of the coordinates of the system. X and the
after the sudden termination of excitation of elements of p are real for overdamped modes,
the structure by a forcing function containing but for urderdamped modes they are complex,
contributions in the frequency range of interest. and occur in conjugate pairs. Each conjugate
It is necessary that a mode contribute to the pair combines to produce a real mode shape
response in order that it can be detected. corresponding to a single natural frequency and O
Narrow band random excitation and rapid fre- damping factor. For a complex conjugate pair
quency sweeps have been used with success in of modal vectors having the first element of
laboratory experiments. In this way, a con- each normalized to unity and having the kth .. ?
siderable amount of energy may be built up in elements c+id, the displacement of the kth -
the structure during excitation, to be dissipated coordinate is - and its motion lags that
during the free response. This contrasts with N
transient procedures which depend upon, and of the first coordinate by tan- (di c). For a
can be seriously limited by, the amount of complex conjugate pair of roots a+ib, the
energy which can be imparted to the structure damped natural frequency is wnd 7 b, the un-
byapulseorastep. n

damped natural frequency is wn and
Dependent upon the form of excitation, the the damping ratio is

response may, in theory, contain an infinite
number of modes, although it is not physically = a
possible in pr.tAice. For the theoretical devel- 4a b
opment described here, it is assumed that a
finite, but for the present known, number of The problem of modal vibration testing is
modes is excited. While this assumption is to determine from the test data, the values of
necessary and fundamental to the technique ) and p which satisfy Eq. (3). The test
described, it also allows the testing of a com- -ad hcstfyE ()-etspests, data required may be any one of the displace-plea structure to be done in a series of 1.t, mnvlct facleainrsos .-

each of which covers a frequency spectrum ment, velocity of acceleration response
only as wide as desired. This makes the pro- assumed for the present to be measured at the . .-n stations. The response, be it displacement,cedure analogous to a series of tests on simple v o cation, conit sum of~~velocity or acceleration, consists of a sum of "

systems rather than a single test of a large contributions made by all the modes, and can
system, keeping both instrumentation and com- be written as
putational complexities to a lower level.

2n
It is convenient to imagine the response )e (4)

that is thus monitored as being equivalent to x pe
that of an hypothetical n-degree of freedom j=1
lumped parameter system with all modes ex-
cited, and in which the masses undergo the The response at time ti is
same motions as the measuring stations on the
structure under test. The natural frequencies 2n
of the hypothetical lumped system are the same - "
as those of the structure, and the mode shapes x(ti) = x p e)i (5)
of the lumped system are equivalent to the .- -.
modal displacements of the structure measured
at the measuring stations. The identification of and the response vectors measured at 2n differ- I S

the vibration parameters of the structure is ent instances of time can be written in matrix
now pursued through the determination of the for as ow n
vibration parameters of the lumped system. form as

The lumped system is assumed to be N'*"%.$:'
described by the following equation during its
free response:

M i+CA+Kx=O (1)
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[x " 2 .... I The responses given by Eqs. (7), (10)
and (13) can be manipulated to solve for the

X' tl Xt t2 n eigenvalues and modal vectors. First,
e e e Eqs. (7) and (10) are grouped to be written as

x2t1 IX 2t2nr
p1 P. p2n .......... e (6) =1 A (16)

, or

e I 2Nt 2  = 4 A (17)

and (10) and (13) are written as O
or

(7) A(18) .

Responses that occur at time At later with L.'"'" "
respect to those of Eq. (7) are or

Y1 Y2 .... X2n = = A (19)

eAl(tl+At) ...... XI(t2n+At) 1t is shown in the appendix that theee inverses of the matrices 4 and ;b exist. Also, """"."

, , the inverse of 4I and 4 exist, because their
(8) columns are pioportiohnal to the modal vectors,[P1 P-2 .... P2n]I which must be linearly independent. Hence,

Eqs. (17) and (19) can be manipulated toI eX2n.(t+At) X2n(t 2 n+At )  eliminate A, giving the result i. -..

where (20)
y This equation relates each column, 4, of

i x(ti At), i 1,2,...,2n % to the corresponding column, ' of '-

Eq. (8) can be rewritten as through - 0

SY '2""" Y2n] = [ -.... 2n- (9) _- - i =1,2,...,2n (21)

or The column vectors 4i and 4i are also related
through Eqs. (11) and (15) by

QA (10) XiAt
where -'.=e -±i (22)

= P it = 1,2,...,2n (11) Equations (21) and (22) can be combined to give
X ,eiAt  -,

In a similar manner, responses that occur at -1 - 1 i = i (
time At later with respect to those of Y are - - ---(23)

[Z1 2 .... 12n ] = [r 1 E2 .... r2n] (12) This equation is an eigenvalue problem which
enables the measured response to be used in

or the calculation of eigenvectors and elgenvalues
which are related to the vibration parameters

Z = R A (13) of the structure. The modal vectors are
merely the firs' n elements of the eigenvectors

where of t 4-1, but the relationship between the eigen-

E z=x(ti + 2At), i =1,2,...,2n (14) valus and Xi, the characteristic roots of 0
-i-andEq. (1), requires further analysis. This rela-

and tionship is discussed below with reference to ...-.
" " an eigenvalue 3+i y, of 4b 4-, which is related *"

A At 2 XiAt, i = 1,2,...,2n (15) to a characteristic root- a+ib. It is to be noted
i e that the eigenvalue 0-iy and the corresponding
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characteristic root a-ib would also exist but for some value of k. Writing the minimun andfor simplicity it will henceforth be assumed maximum values of damped natural frequencies
that b_( 0with the understanding that for every as related to the .inimum and maximum values
b>O the conjugate root a-ib also exists. The of the frequency range of interest as
eigenvalue +i-y is related to a+ib through! bmin > 2if min 0

. + iy = e( a + i b ) At  (24)

Thus, bmax < 2lfmax

= eaAt cos bAt and the sampling frequency fs as .

and fs
a At

= e sin bAt Eq. (28) requires that

from which fsk < 2fmin k.0"",. ...Sk =0,1, 2,... (29)1 = ' n( 2 + g2) f25 f (k + 1 ) > 2fm .. ,

andor"

2f max <2mn.-.-.:
b 'tan (26) < f < ' k =0,1,2,... (29)At 1 kV

Hence, real eigenvalues of 4-I correspond to This equation can be used to relate the fre-
critically or overdamped moTes because they quency range of interest to the acceptable
represent real characteristic roots. Natural value or values of k for use in Eq. (27)
frequencies of underdamped modes are repre- through
sented by complex conjugate eigenvalues, ...-..
and must be determined using Eqs. (25) and 2fmax 2fmin
(26). - < ---- , .-

SAMPLING RATE or

Equation (26) does not allow the natural Imax k+1 k
frequencies to be determined uniquely, because m k ' k =0,,2,.. (30. ~it can be written as-"."...

The determination of frequencies in a range %%
from fmin equal to zero, to some upper limit

1 [tan-1  .. 0ta'(<7 i
+b - n ( k)+k ... (27) fmax' requires, from Eq. (30), that k = 0.

In addition Eq. (29) requires that

Thus for each damped natural frequency b, f > 2f (31)
there is a relationship between At and the value .max.(31
of k which should be used in Eq. (27). At This requirement on f may present practical
is the time delay used to generate the delayed .
response matrices Y and Z from X, and thus difficulties if fmax is excessively high, but it

A T represents the sampling rate required to is seen below that the requirement for deter- S
obtain these delayed responses, although con- mining high frequencies can be made less

vectors need not demanding if testing is done for a frequencybe used as the columns of X range having a lower limit greater than zero
bu a u oand thus allowing values other than zero to be

used for k. Equation (30) defines the maximum.TO avoid ambiguity in the use of Eq. (27) width of the frequency range which can be used
it is necessary to specify that all the modes with the various values of k or, conversely, it
which contribute to the response correspond to can be thomght of as defining the possible values S
frequencies which can be calculated from the of k which can be used for a desired frequency

- equation by using only a single value for k. It band. This information can then be used in
is required then that for all values of b in the Eq. (29) to determine the allowable sam-
frequency range of interest, that etermin the allowidth ofth.', ping frequencies. The maximum width of the

kr < b < (k+1)r (28) frequency range s fmax /fmin equal to two for .-
', At At which the lowest sampling frequency is fmax
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and k equals unity. As the frequency range as a correction factor to obtain the actual
" decreases, the sampling rate may be chosen structural frequencies.
" from an allowable range, and with frequency

ranges that are sufficiently narrow it becomes N
possible to choose sampling frequencies from PRACTICAL APPLICATION
several allowable ranges, each range corre- 0
sponding to a different value of k. This is An important assumption made in deriving
demonstrated in an illustrative example below, the theory is that the number of measuring

stations on the structure equals the number of :
' It is supposed that all the natural frequen- degrees of freedom of the hypothetical lumped

cies up to 1000 Hz are to be determined for a parameter system with all modes excited.
structure. Two approaches can be taken; Thus in performing a test it would be neces- .'-..
either the entire range can be covered at once, sary to know in advance the number of equiva-
or it may be subdivided into several narrower lent degrees of freedom to be excited, so that -
ranges, each to be covered separately. the correct number of measuring stations

could be employed. In practice, this informa- .
A single test covering the range from tion is not usually available, and even if it

0-1000 Hz would require, from Eq. (31), were, it might not be possible or desirable to
that the sampling frequency be any value use the same number of measuring stations as

.* above 2000 Hz, and k = 0 should be used in there are equivalent degrees of freedom. This .: -.
* Eq. (27). section describes a procedure whereby the

theory developed thus far may be used in con-
Division into narrower frequency ranges junction with any convenient number of measur- .*.

must keep in mind that, for any range having ing stations. As few as a single station may be
*-. a non-zero lower limit, the upper frequency used for determining any number of frequen- ...

limit must be not more than twice the lower cies in a single test, and modal displacements
frequency limit. (If the upper frequency limit at any number of points may be determined
is more than twice the lower frequency limit, using as few as two stations at a time in a -
k should be 0). Suitable ranges for the case series of tests using one station as a reference.
being considered would be 0-400 Hz, 400-700 Hz, 0
and 700-1000 Hz. Each frequency range must Three possibilities exist in the relationship
be studied using response information which between the equivalent number of degrees of
contains (through filtering or other means) only freedom excited, and the number of stations at
frequency components in the range of interest. which measurements are made. The number--
The frequency range 0-400 Hz must be studied of stations used may be greater than, equal to,
using a sampling frequency of at least 800 Hz, or fewer than the number of degrees of free-
with k=0 in Eq. (27). The 400-700 Hz range dom. Each situation requires a different com-
range requires, from Eq. (30), that putational approach, so the determination of 0

which of the three possibilities is actually
700 < k+1 present is the first goal in the analysis of ex-
TOW k perimental data. These same possibilities

arise and are dealt with in [19] and parallel
hence k = 0, 1 are acceptable, with correspond- procedures are used in dealing with them here.
ing sampling rates as determined from Verification is dealt with fully in[19], so
Eq. (29). These rates are fs > 1400 Hz for emphasis here is placed only on describing the
k = 0, and 700 Hz < fs < 800 Hz for k =1 i procedures employed.

Eq. (29). For the 700-1000 Hz range, The first step in the analysis of experi-
k = 0 1 2 are acceptable with sampling rates mental data is the determination of the number

S fs > 1060 Hz for K = 0, 1000 Hz < fs < 1400 Hz of degrees of freedom of the associated hypo-
fork =1 and 667 Hz < fs <700Hz fork =2. thetical lumped parameter system. This isfok =done by determining the number of independent

modal vectors which contribute to the response,In comparison of sampling rates for the on the basis that the rank of the matrix!& is
two approaches, the first requires a rate of at o s th r

" least 2000 Hz while the second requires a rate equal to the number of independent modal .
of at least 806 Hz. The requirements for the vectors, 2k, used to make up its columns. It is
second approach can be reduced still further if kept in mind that a pair of complex conjugate
narrower frequency ranges are chosen modal vectors corresponds to a single realnarrowr funderdamped mode, and thus for a structure in

"Another solution to the problem of requir- which all modes are underdamped, the numberA s t rrof real modes is half the number of modal
ing high sampling rates for a certain frequency vectors. Also, overdamping results in two real
range of interest is the use of a tape recorder
at a high recording speed, with the recorded modal vectors corresponding to a single degree .atahighorecorin peed, wih ath eowerdpeed of freedom. Hence, the existance of 2k inde-
response then played back at a lower speed pnetmdlvcoscrepnst or-.pendent modal vectors corresponds to a corre- .. -.
during the digitization process. This can
reduce the required sampling rate by a factor sponding lumped parameter system having k .
of the ratio of the two recorder speeds that degrees of freedom.
have been used. This ratio is to be used later
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First, the matrix 4 is formed using the parameters. These two methods are:
responses obtained frocii all the measuring
stations which have been used. Then, in theory, 1 - Least Square Error Minimization:
it should only be necessary to successively This can be accomplished by using more data
calculate the determinants of sub-matrices of than needed and find the parameters with least
_0, using the first m elements of the responses error that satisfy the data. In such a case

.- o-f i stations at 2m instants of time, where m $ and D will be rectangular matrices and .

takes on values from unity up to a value at Eq. (23) will be:
*J which the determinant becomes zero. This ..

value of m equals k+l whence the response of 1 iAt
only k stations need to be used to identify the [, T] [T] - i = e -i' (34) \.\ -'--

vibration parameters of the structure. In - - --i
practice the computed determinant is never
zero due to measurement noise and computer 2- The Use of Oversiecified Math Model: 0
round-off, hence instead of using the value of In this case the number of degrees o treedom
the determinant itself, the ratio of two succes- of the mathematical model is larger than the
sively calculated determinants should be used number of modes to be identified. This will 2.

[20]. The responses of the excess measure- give an escape for some of the noise thus
ment stations may be used in a modification of improve the accuracy of the identified modes. -" "
the computational procedure as described in
[19]. EXPERIMENTAL RESULTS

If the determinant check described above"1.,Cantilever Beam
does not reveal the number of modes excited, 1. Cantilever Beam
then the number of modes is either equal to orA..m..t.cq.
greater than the number of measuring stations. An experiment using the technique de-
In either case, it is required to increase the scribed in the preceeding sections was carried
apparent number of stations through the gener- out using a steel cantilever beam. The dimen-
ation of response vectors of higher order, with sions of the beam are shown in Fig. 1; also
a corresponding increase in the number of time shown are the locations of two accelerometers
instances considered, thus increasing the order which were used in measuring the response.
of 4, and allowing the determinant check to be
continued. The response vectors of higher The range for which frequency and modalorder takes the form information were to be obtained was chosen as - -0-500 Hz. The beam was excited at a location

about 3/4" from the free end with a narrow
x' (32) band random signal, and the accelerometer

- outputs were filtered to eliminate frequency 0

components higher than 500 Hz.
where

According to Eq. (31) the sampling rate
(t + A T) (33) should be greater than I00 Hz; a rate of

7500 Hz was used.

in which AT is any convenient value which must The results of the analysis of the experi-
be different from At. The procedure can be mental results are summarized in Tables I and
repeated to triple, quadruple, etc., the order of H. The determinant check using the direct
the apparent response vector using other values results of the two measuring stations is incon-
for AT, using the determinant check after each clusive, thus higher order response vectors
increase until the number of modes is deter- were generated according to equations (32) and

. mined. The frequencies are then computed for 20
" the appropriately enlarged 4', and the mode (33), in which AT was taken as - sec. and

shapes are given by the eigenvector elements 40sec.; t was taken as I i--e
• which correspond to the original measuring 7500 7500

stations, that the direct use of the determinants is incon-
clusive, but the use of determinant ratios indi-

Another problem of practical importance cates that there are three equivalent degrees
- which arises is in the introduction of errors of freedom. The results of 30 sets of calcula-

due to measurements and recording noise. In tions using different sets of response vectors
the next section, two methods are suggested to from a single test were used in generating this
reduce the effect of measurements errors on information. The record length that was used
the identified parameters. These methods were to perform the necessary calculations was
used in the second (payload model) experiment. 0.2 sec.

In Table 1, the results are shown in com- :'

MEASUREMENTS AND RECORDING NOISE parison with those identified using the peak
amplitude method in conjunction with a simple

Two methods are used to minimize the eff frequency sweep, and with the theoretical
effect of different kinds of noise on the identified (undamped) parameters using Bernoulli equation
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Station 2 Station 1 0. 249"

72....1.748"

18.5" '.

Fig. 1I Geometry of the cantilever beam
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1~~~~~. 0.75 0 .86.

1 0.2705 x 1001 0.183 x 1011

5 0.2394 x 10 2  0.83 17 x i1

6 0.2879 x 1
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for beams, and with results obtained using the Although it was known from the determi-
method of [191. There is a good comparison nant check that the system's responses con-
of the results for frequencies and mode shaped tained about 10 modes, a mathematical model
obtained by all three experimental methods, with 20 degrees of freedom was used to identify -.
particularly between the two time domain pro- the system. Also a math model of 40 D. 0. F.
cedures. It is noted that the time domain was used. Structures mode can be differenti-
methods give phase information regarding the ated from noise modes by observing that the
coordinates in addition to the amplitude ratios. system's modes occur consistently in different
The damping ratios as obtained by the two time computer runs. Table IV shows the frequencies
domain methods do not agree so well. The of the ten modes obtained by this technique -
determination of damping ratios in both cases using a math model of 20 and 40 D. 0. F. Also
depends upon the relative amplitudes of the listed are frequencies obtained by sine sweep
real and imaginary parts of characteristic test and NASTRAN. Figures 4-a to 4-f show
roots. For modes which are as lightly damped some of the identified mode shapes. -
as those encountered in the beam used in this
experiment, even small errors in the relative
amplitudes of the real and imaginary parts can CONCLUSION
cause large differences in the damping ratios
obtained. The theory and application of a time domain

modal vibration testing technique are presented.
2. Generalized Payload Model The results of the two experiments reported in

this work are very encouraging. The second
The payload model is shown in Fig. 2. experiment (payload model) proved that the

Sixteen accelerometers were fixed to the eight technique is insensitive to measurements noise.
...- bulkheads; eight accelerometers on each side, While the data used for this experiment had a

Fig. 3. Two data groups were used. Data about 22% noise, the identified frequencies .. o
group one had accelerometers 1 to 8. Data compared extremely well with the analytical
group two had accelerometers 9 to 16 and accel- (NASTRAN) and the other experimental (sine -.-.-
erometer 8 as a common accelerometer for the sweep) frequencies. Maximum error in the
two data groups. A random input was applied at identified frequencies was in the range of 2.5%. 6
station 8. The input was cut off and free re- .sponses from data group one were recorded on Another important feature of this technique

% a tape recorder. The procedure was repeated is the ability to use an overspecfied math
for data group two. A two-way switch was used model to identify a number of modes much less "-....
to cut off the random input and at same time than the number of degrees of freedom of the
generate a D.C. signal of about 1 volt. The math model. This is very useful when the
start of the D.C. signal, recorded on a separate number of modes in the structure's response
channel of the tape recorder, was used to deter- is not exactly known because the determinant
mine the start of the free response. check, due to high noise levels in the data,"'" might be inconclusive.

"*' The free responses were filtered to elimi-
nate frequency components higher than 350 Hz Simplicity and economy of the experimental
and then digitized at a sampling rate of 2000 procedure was the main factor in designing this
sample/second. Only 500 points for each chan- technique. Any structure, however complex,
nel were stored to be used as data for the iden- can be identified in stages using only two sta-
tification program. This corresponds to a tions t a time. Also the data needed for the
record length of 0.25 second. identification program was minimized. The

free response needed can be either displace-
The noise/signal ratio for the resulting ment, velocity acceleration or strain response.

data was estimated at about 22%. This estimate The length of record needed to identify a certain "
was based on comparing two responses from structure was noted to be relatively small.
station 8 that were recorded simultaneously on Only 0.25 seconds of data was used to identify
two channels of the tape recorder. The root the ten modes of the payload model.
mean square of the two records, rms and RMS,
were calculated and the noise/signal ratio was

- estimated using the following formula: ACKNOWLEDGEMENT
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check indication is not as strong as in the canti- of Vectors in Vibration Measurement and..-
lever beam case because of the higher level of Analysis" J. of the Aeronautical Sciences,.-

- noise in the payload model response. Vol. 14, 14o. 11, pp. 603, 1947
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Random force
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Fig. 3 -Location of stations

TABLE III w ,-
Derterminant Check ,:,.

No. of -

Stations IelN IDetIN/IDetiN+l
(N) __,

1 0.50 x 100 0.35 x 101

2 0.14 x 10 0.32 x 102  ..-

3 0.46 x 10- 2  0.10 x 103

4 0.43 x 10 . 4  0.10 x 103

5 0.45 x 10- 6  0.11 x 103

-. 6 0.40 x 108 0.13 x 105

7 0.31 x 10 12  0.88 x 104

8 0.35 x 10 "1 6  0.66 x 104

9 0.52 x 10 2 0  0.12 x 106
10 0.44 x 1025 0.20 x 1010 *. '!"

11 0.25 x 10 . 3  0.10 x 1010 .p .

12 0.25 x 10- 4 3  0.24 x 1011

[ 13 0.10 x 10 . 5 3  0.34 x 1010 1

14 0.30 x 10-63 0.77 x 1010

15 0.39 x 10 7 3  0.13 x 1011 a...

16 0.30 x 10- 8 3  0.24 x 1011

17 0.13 x 10- 9 3  0.13 x 1013

18 0.97 x 10 6 0.46 x 1011

19 0.21 x 10 - 1 16  0.16 x 10 1 2

20 0.13 x 10- 12 7
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TABLE IV
Frequencies for the Payload Model

Mode Motion Time Domain Frequency NASTRAN

20 D.O. 40 D.O. F.
I 1st Bending 74.20 74.15 74.6 73.4

2 1st Torsion 78.75 78.75 79.7 80.1 4

3 1st Bending 119.88 119.83 120.7 117.3
(Yaw)

4 2nd Torsion 156.63 156.63 158.5 158.9

5 2nd Bending 161.95 161.93 163.1 159.9

6 3rd Torsion 216.51 216.44 219.2 218.6

7 3rd Bending 245.00 245.18 246.7 244.6

8 2nd Bending 259.55 261.04 263.7 253.1 1

9 4th Torsion 280.95 280.94 283.7 283.0

10 5th Torsion 325.31 325.31 328.0 -.
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and A takes the form

A Ie e ... e

JJ

eXnt 2X 2 t .e(2n-)X2npt

*Substituting e ) ci t

0 OC2 2n-1

1 2 c2n-I

A is written as the Vandermonde matrix (21),
* for which the determinant is

JAJ =nex1(-x )

1< i< J<2n .J

Xiat X at

4'.~

1l< <j <2n

Equation (A-5) shows that A~ is singular only if -
there are equal X's, which is unlikely. Thus in

* the usual case the inverse of A exists, and f
and 4 are non-singular.
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The PATRIOT missile is captured in flight ence of the turntable, and a brake, which pre-
by ground radar and command-guided through vents turntable rotation, is located at the
midcourse. The missile also has an onboard motor end of the high ratio drive transmission.
radar seeker antenna. The engagement control Overall yaw compliance is significantly influ-
station must determine the seeker spatial ori- enced by wrap-up in the drive transmission and
entation with a specified total acquisition local deformation of the drive housing support
error (TAE) to acquire the target. An impor- structure. This region was particularly sensi-
tant component of the TAE is the initial align- tive to inadequate modeling. ..'-=. '

ment error (IAE) which is the difference in
actual spatial orientation of the missile at Pointing error prediction verification was

- launch and orientation values used by the com- accomplished indirectly: static influence co-
* puter. efficient measurements and the measurement of

decay rates in "ringdowns" following quick re-
The only source of IAE of interest here lease of loads were used. The static influence

is the elabtic deformation of the structure coefficient test was designed to:
under environmental and operational loads. . .
Wind, snow, ice, and payload variations are J.
thousands of pounds, while corresponding allo- e verify the analytical model by
cations to the IAE error are on the order of direct comparison of selected
milliradians. In addition to these steady analytical and experimental in-

loads, a transient load is created by the plume fluence coefficients;
impingement pressure of departing rounds. In- e provide a basis for re-estimation
formally, this is called "dynamic pointing er- of error by having the missile
ror" and the steady load IAE "static pointing spatial alignments among the out- ",-

error." put displacements and selecting

the load inputs such that the en-
MEASUREMENT PLAN vironmental loads could be com-

posed from smoothed linear combi- . -
The theoretical analysis used to predict nations of inputs at the test

errors employed a finite-element structural load stations;
analysis computer code (Reference 1). Predic-
tions based on a large order finite-element e develop data to identify the cri- .
model were calculated in single precision on tical "soft spots" in the struc- .

an IBM 360. Results showed positive margins ture if negative margins were dis-

against all allocations, and predictions were covered.
of the same magnitude as the allocations. The

adequacy of margins depended strongly on the The problem of finding "hard points" to
predicted proximity of rectilinear load cen-
tersapply point loads of the magnitude of distri-buted loads, as well as minimizing task time
ters) in the static deformation modes. Due to
the vicissitudes of large order finite-element ivd wt a low nm e o p ad outputs"'" sstem nalyis an the ensiivityof prdic- ieved with a low number of inputs and outputs. ,-.•

system analysis and the sensitivity of predic- At the same time, a good distribution of in-
tions to elastic center location, an experi- t a tser t strutra st 'n-~puts and outputs over the structural system*/ mental verification pormwas dsrd -.

program w desired was needed. The loads, displacements, and end

In the LS/GM configuration analyzed, lat- instruments selected for the test are listed

eral tension ties were positioned between each in Table I.
*- .. canister at the main frames. The requirement The LS/GM test item consisted of the

for these ties had been created by a need to PATRIOT shop queen launcher mechanics, an XM860
transfer blast-load-induced momentum across the trailer, ballast, a 15-kW diesel generator, and
canister stacks. The strength requirement for tar balat, auide disle nror, ndfour simulated guided missile (GM) rounds, one .~""

V the tension ties was eliminated, and there was representative of a tactical unit. The three • "
some reason to believe that their contribution remaining canisters were ballasted to tactical

* to overall stiffness was negligible in holding weight and center of gravity.

deformation-type alignment errors within ape-

cified limits. It would have been very expen-
sive to reconstruct the input data sets and INSTRUMENTATIO CONSIDERATIONS
rerun the analyses to demonstrate this, how- I M-:O.- N

ever. Instead of recalculation, three static Rectilinear and angular displacement mea- "
test runs were made with ties installed for suring devices using remote laser beam guns . .".*.

direct comparison to runs in which the same for displacement reference were developed to _.
loads were applied to the structure without satisfy two significant requirements. Firstly,

S, ties. the rigid base reference for displacements un- _

"soft disturbed by loads or ringdown dynamics was
The turntable is an important "soft spot" needed. This would have been difficult to ob- ..

in the structure. Static moments about the tain using ordinary position pots attached to
turntable axis are reacted elastically through light scaffolding around the loading framework. ,.,"

a small drive on the pedestal. A pinion on Secondly, an accurate single axis measurement
the drive engages a ring gear at the circumfer- in the presence of tri-axial motion was needed.
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TABLE I

Static Influence Coefficient Test*

Line- Maxs
ore .. Delection
mant Load Lin Load uresent Range
No. Input No. ... urement/Load Line Input Location Axis Axis End Instrument in Axis .

'5I I Roadside elevation actuator/platform interface pivot +Z +Z' Laser and detector +1.0 in a * a

2 2 Lower roadside canister aft end frame at upper curbside corner ±X' ±X' Laser and detector +I.O in
'5 3 3 Lower roadside canister forward main frame at upper roadside corner +Y +Y Laser and detector ±,.O in

Upper curbside canister aft main frame at upper curbside corner + - Laser and detector +1.0 in - -% 5 Upper roadside canister aft main frame at upper roadside corner +Y +Y Laser and detector +1.0 in -
'5 6 6 Roadside platfom/turntable elevation pivot ;X' ;X Laser and detector +0.5 in

- 7 Curbside platformturntable elevation pivot ;Z Laser and detector +0.5 in
8 8 Curbside elevation actuator/platfora interface pivot +Z' ;Z' Loner and detector 1.0 in

9 9 Roadside elevation actuator/platform interface point +Y +Y Laser and detector 9.0 in
10 10 Upper curbside canister aft end frae at iower curbside corner ±X' _' La ser and detector +1.0 in
i i1 Aft trailer ciasss longitudinai centerline +0. .xDisp tranducer +0.5

12 il Radar support bracket at Tra Sta 434, W 43, RL +29.75 ±Y ±Y Dlisp transducer +0.25 it
i3 il Radar support bracket at Tra Sta 434. 51 43, 5L +29.75 +Z" +Z lsp transducer 50.25 in
14 14 Radar support bracket at Tra Sta 515. AI 43, RL +40 Y'' +Y Diup transducer 00.25 in
1S 15 Radar support bracket at Tea Sta 515, WL 43, BL +4.0 Z'' +Z Dlisp transducer 00.25 in
i6 A Curbside platfOrl/turntable elevation pivot - X Laser and detector +1.0 in
17 Upper roadside canister forward end frame at upper roadside corner + Loner and detector 01.0 in
I8 Curbside platform/turntable elevation pivot ;Z Laser and detector +1.0 in
19 N.ssile. Sta 309 +U' Laser. mirror. GP target ;10.0 sr
20 Lssile., Sta 303. roadside vertical centerline ;V Laser. mirrnr. bia0iai. 10.0 Sr

auto collimotor, ch 120 issile. Stea 303, roadside verticai centerline +5' Laser. mirrr. biaxial, t10.0 ar

22 Lasncber bane at Sita 538.0, RBL -12.0. WI. 48.25 0 Lauer mirror 1-,. "'io1 +5.0 er

23 pauto collimator, ch 2
23 iLauncher base at Sta 538.0. RL -12.0, 51L 48.25 +V Peudulum disp +2.0 Sr . . .
24 Launcher base at Sta 538.0, RL -12. WL 48.25 +- Laser. mirror. blaial. +2,0 Sr

+W; - Lauto coliator. i 2 - -l+2.0

25 Turntable/iauncher base (tangential motion) +0 lisp transducer +15.0 Sr 2p.

26 Outrigger vertical strut, forward roadside +Z Strain gage 25K k. .
27 Outrgger vertic.l strut, aft roadside -z Strain gage 25K
28 Outrigger vertical strut, forward curbside +Z Strain Rage 25K
29 Outrigger vertical strut, aft curbside +Z Strain gage 25R

-30 Pinion gear rotation +- Disp transducer +222 sr

3 input load - 20K dual output load cell 20K
32 Radar support bracket at Tra St4 434, WL 43, RL -29.75 +Y Disp transducer 00.25 in. ' ,
33 Rada support bracket at Tra Sta 434. A1 43. BL -29.75 +Z Disp transducer 00.25 in34. Radar support bracket at Tra Sta 515, WL 43, BL -40 +Y Disp transducer 00.25 in .. .

35 Radar support bracket at Irs Sta 515, WL 43. Ri. -40 +Z Disp transducer ;0.25 in
36 Turntable/launcher base -Z Disp transducer 0.25 in

* 37 NA Test identification (three digit number sequence) M Manual data entry

Notes:.

*Tentative may be changed if dictated by test data or structural analysis.
Quick look measurements - input load, load line measurement, meascrement numbers 1, 2, and 3. S

tTurotable backlash test.

A deformation survey was conducted of the ducer was mounted to detect tangential motion
- structural test laboratory to ensure that effec- at the turntable to pedestal interface. Mea- s

tively rigid backup of the LS/GM existed at the surement 23 incorporated a displacement trans-
floor interface and that displacement reference ducer to detect motion of a pendulum moving
stations would not be disturbed by test loads in the launcher base pitch plane.
or motions. Measurements 1 through 10 and 16 through 4....

INSTRUMENTATION 18 employed Spectra Physics Model 132 helium-
neon lasers and United Detector TechnologyModel LSC-4 laser detectors. Each measurement

Measurements 11 through 15, 23, 25, 30, employed a laser gun with a MMA-designed opti-
and 32 through 36 used moving core-type dis- cal attachment which fanned out the emitted
placement transducers from the Hewlett/Packard laser beam and changed its cross-section to a S
7-DCDT Series. Measurements 11 through 15 and narrow line. This optical modification elimi-
32 through 36 were made with moving cores at- nated cross-axis motion effects. The line
tached to their displacement stations by air- bisected the laser detector at a 90-degree

-. craft cable. The instrument core shaft was angle to the sensing direction, and cross-axis " " -
spring-loaded at the rear of the transducer motion left the detector impingent light pat- %
case to hold the cable in tension, thereby tern virtually unchanged. Rectilinear dis-
permitting bidirectional measurement, placements were measured as the laser detector,

which was mounted to the test item, moved dur-
For Measurement 30, the cable was wrapped ing application of load. The relative motion

around the undercut of the pinion gear so the of the laser beam on the surface of the detec-
41,. core moved rectilinearly in proportion to pin- tor produced a change in resistance in a bridge
, ion gear rotation. The core of Measurement 36 balance circuit (Reference 2).

".11 was spring-loaded in compression. The shaft/
test item interface allowed low friction trans- Angular displacement Measurements 20
verse sliding. For Measurement 25, the trans- through 22 and 24 used a novel technique. The
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Spectra Physics Model 132 laser gun was used and yaw were measured similarly. The laser
to illuminate a mirror attached to the test beam was aligned close to the mirror surface-

*item. The reflected beam was projected on a normal direction to eliminate the effect of
plexiglas target, which was sandblasted to mirror-normal motion on the measurement. ....

diffuse the intense laser spot. A Phystec
Model 440 auto-collimator optical system, which Measurements 26 through 29 used BLH Model
has bidirectional spot tracking capability, was SR-4 strain gages. These measurements were

* used to lock-on the spot position at the back closely proportinal to the outrigger pad ver- *

of the target. The Phystec thereby provided tical loadings. Measurement 31, the input
signals proportional to missile pitch and yaw load, employed a BLH Model U3G2 20K load cell.

* ~~displacements (Figure 2). Launcher base roll %~**

MEASUREMENT1

LASER DETECO -LASER DETECTOR ~-
MEASUREMEN 5. MEASUREMEtNT 4 *

SCREEN

* ~" ~ ~ LASER GUN--

IFigure 2. Aft View of Test Setup

* ~STATIC INFLUENCE COEFFICIENT TEST was erected adjacent to the test item. A load .'*--

The LS/GM, in the emplacement configure- line, consisting of a hydraulic Jack with elec-
*tion was set up in the MMA structural test lab- tronic load cell and attachment fittings, was
*oratory (Figure 2), and a steel teat fixture mounted on the test fixture and attached to the

* 202

'%, 4..

%

- % % %..4% . . . .. . . . . . . . .

** ~ ~ 8*~8*~- - *84 -. ~** ~ % * * 8 4 '. ~8 * * ** * .. *~ - *8~ . **



--

test item at one of the fourteen prescribed in- digitally using a Systems Engineering Labors-
put locations. Instrumentation was set up to tories Model 600 data acquisition system. The
record the measurements as indicated in Table input control, output recording, and safety

* I. Instrument data were sampled and recorded feedback are shown in Figures 3 and 4.

OVERLOA TURNTABLE
PROTECTION ROTATION ETCODCO

TAL RITICORDINGNDUTO

CARALIT/CIGITAL

TAPE RCORDIN

ANALOGDIGITA

LOADCELL JACK LOADLIN

CONNECTIO

moos

SERVO~ COMN

FEEDBACK LOA

Figure 4. nlunstruentin Rect odng lcai

T. ,- NG

A03 REO R -POT

DIGITAL

L~~~ AD. TAE ECR

V ~ ~ PD E SIGNAL V V V __
* . * ~ *~ V T t .- ~. . . ~ * * * * - * .* .* ** * * .. * . % ~ % * .* .. * . *% * % '. '. . . .. *
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Test loads were applied (Figure 5) in data sampled at a constant rate. This helped

three adjoining cycres at a low rate of appli- define friction-backlash nonlinearities near

cation. The load function was supplied by an the origin, and produced a better distribution

HTS Model 480 load programmer. Each cycle con- of data points in the linear load-displacement

tained a tension load followed by a compression range. Approximately 800 data samples per

load. The cyclic loading rate was 25 seconds channel, per cycle were recorded.

per cycle to avoid significant dynamic forces. Measurement 19, a reflected laser beam

The first cycle peaked at 1/3 of the maxi- spot, was visually observed and manually plot- % 4, - . -

mum specified for that particular load point, ted on graph paper. All other instrumentation *-

The second and third cycles peaked at 2/3 and was recorded on magnetic tape. The tape-re-

3/3 of maximum load, respectively. The motive corded data were re-recorded on I4 0S/360 tape

for this application formula and the modified files, edited, and plotted on a CalComp. The

versine shape of the load function was to ob- plotting program also calculated the influence

tain point density near the origin of the dis- coefficient value using a modified least square

placement versus load plots based on digital fit of a linear function. Typical plots are
shown in Figures 6 and 7.

% t111~~~662/3 """'"'.

*Figure S. Modified Versine Tricycle

100 -

LAB RUN NO: 2-1 SICT WO ...P
I p ISPLRCEMENT-LOAD INDICES: 3.2 -- %.

025330 I5 "

" 5 E socosos INFLIENCE COEFFICIENT (SLOPEI XIO.3 =+V,.(05

" %- 'f . .- %e,

Figure 6. Measurement No. 3 versus Applied Load .- "
Load Line No. 2

L RUNHQ: S1 51 : I FORCE IN POUNDS 1X I o . -
DISPL.ACEMENT-LOADO INDICES: 3.S
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-8 Figure 7. Measurement No. 3 versus Applied Load
,Z, Load Line No. 5

FORCE IN POUNDS 1XVO•

204

V

,-, %..... -%... . - %,. .. ... %. . .. , ,, . , . . , .. -. . ... ...., .
k?. . . . ,.'. -. . . . , .. . . , , ._,,. .,_,.,,'..',., r . ,F,'. - , . .. ,. - ." '.,%. ".-...

t "q:%i--,, ,'' ,: *- m I • - " a % '



FREE MOTION DECAY MEASUREMENT These damping values were calculated by fitting
linear plots to the sequential variations (peak

Free motion decay measurement was accom- to peak absolute values) in the decays as plot-
plished in the static influence coefficient ted on semilog paper.
test setup, except the load line was a manually
controlled Jack with a quick release mechanism.
Test runs were made using three of the influ- RESULTS
once coefficient poiits selected to obtain de-
cays in the lowest symmetric and antisymmetric Selected static influence coefficient re- -
modes of motion. sults for seven load lines comparing predic-

ted and measured values are shown in Tables
To produce deflection time histories, mea- II and III. The nonentries in Table III re-

surements recorded on analor, magnetic tape were present measurements so small that they fall
processed through an X-Y plotter at reduced within only a few quantization levels and a
speed. All responses were recorded on digital slope could not be calculated. The table -. _ _-

channels as backup. The analog plots were re- column indices designate load number and the
duced manually to obtain linear damping rates. row indices displacement number.

TABLE II

Measured and Predicted Influense Coefficients
(Inch/Pound x 10")

Measured Values of Influence Coefficients, Matrix M
1'' 2 3 4 5 8 9

1 0.080 0.054 -0.023 0.045 0.035 0.042 -0.042O2 0.054 0.069 -0.020 0.031 0.032 0.027 -0.029"O

3 -0.009 -0.005 0.173 0.041 0.054 0.012 0.149
4 0.040 0.019 0.038 0.179 0.096 -0.028 0.011
5 0.028 -0.001 0.043 0.105 0.156 -0.040 0.006
8 0.040 0.044 0.020 -0.035 -0.038 0.080 0.034
9 -0.027 -0.011 0.171 0.016 0.019 0.025 0.174

Predicted Values of Influence Coefficients, Matrix P

r 1 2 3 4 5 8 9

1 0.120 0.061 -0.018 0.032 0.032 0.071 -0.033
2 0.061 0.067 -0.011 0.001 0.001 0.055 -0.012
3 -0.018 -0.011 0.211 0.048 0.048 0.021 0.195
4 0.032 0.001 0.048 0.097 0.097 -0.028 0.019
5 0.032 0.001 0.048 0.097 0.097 -0.028 0.019
8 0.071 0.055 0.021 -0.028 -0.028 0.119 0.035"- "
9 -0.033 -0.012 0.195 0.019 0.019 0.035 0.198

WPb.

TABLE III

*Measured and Predicted Missile Angular Displacement
Values versus Load Line (MR per 1000 Pounds)

Measured

1 2 3 4 5 8 9
Roll -0.634 -0.132 0.352 1-1.100 -. 490 0.625 0.857
Pitch 0.533 0.409 0.472 ,
Yaw 0.339 0.146 -1.493 0.458 0.410 -0.244 -1.446

Predicted

1 2 3 4 5 8 9
- - - - - 1

Roll -0.545 -0.064 0.323 -1.044 -1.060 0.526 0.703"Pitch 0.659 0.456 -0.030 0.019 0.019 0.590 -0.048Yaw 0.271 0.079 -1.348 0.135 0.138 -0.265 -1.348
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Test results showed the design was within data sets, programming and plot production were
its allocated error budget. The largest dis- easily accomplished.
crepancy occurred in yaw under load lines 4 and
5. By recomposing to the environmental loads, The scrupulosity of the title of this
it was shown that the yaw margin was, in fact, paper has been questioned. A reviewer wrote:
close to the predicted value. Other criteria "The title is misleading in that no 'structural
showed adequately close correspondence of test identification' is performed." It may be that
data and predictions. As expected, the lateral many structural engineers would not use the
ties had a negligible effect on structural com- term for a static influence coefficient mea-
pliances. surement; others perhaps would resent the in-

troduction of a neologism adumbrating an old
Damping rates of 0.03 and 0.07 were ob- locution. The authors maintain that using in-

tained in the fundamental symmetric and anti- put-output to determine parameters of any sys-
symmetric moves of motion. These corresponded tem equation is "system identification." The
to a value of 0.05 which had been estimated on terminology is recent, but solidly ensconced in
the basis of experience with similar structure, the literature.

-. 4...

COMrlErTS CONCLUSION 4--:

Particularly interesting features of the This structural identification program . .
test were: could have been extraordinarily difficult.

Generating the data, handling the large volume
e the laser instrumentation of information, and making the transformations .

. the automatic input and com- to meaningful reduced representations could

puter retrievable data col- have been, in the hands of the sorcerer's ap-

lection prentices, a boundless work. Actually, it was
a remarkably quick and easy job, facilitated

* the data reduction and plot- by the selection of appropriate end instruments
ting using large computer and the use of digital recording, digital com- ,' "
software and hardware. putation, and digital computer graphics. Pre-

dictions of large multilauncher deformations
The laser instrumentation is detailed in Refer- affecting critical alignments in the milli-

ence 2. The automatic input-output features radian range can be made with useful accuracy %-,
helped compress laboratory run time. The accu- using ordinary engineering analysis. Test
mulation of test data in a form easily acces- laboratory verification can be accomplished .. -
sible at a time sharing scope terminal permit- expeditiously. %.. -
ted a quick look at any displacement-load plot
on a CRT scope. 0

REFERENCES
It would have been desirable to examine

results in the laboratory, virtually on-line, 1. O'Hearne, C.S. and Shipley, J.W. "Structural
but a local computer was not available, and Dynamics Computations Using an Approximate
the data acquisition system could not be direct- Transformation," Bulletin 44, Part 2, The
ly connected to a time sharing terminal. Soft- Shock and Vibration Bulletin, No. 44, Part 2,
ware used for the quick-look scope plots was August, 1974.
the same as that used for computer graphics
plots produced for the engineering report. Be- 2. Cawthorn, John E., "The Use of a Low Power
cause extensive plotting software and hardware Laser and Photodiode for Displacement Data,

were accessible from the same terminal as the Bulletin of the 47th Shock and Vibration

Symposium.

%*

DISCUSSIONS

Mr- ayrdahl (Boeing Company): Was this mainly %

an aiming error analyses?

Mr. O'Heane: The requirement was basically
one that came out of systems analysis. We
allocate so many milliradians for environmental
load due to structural deformation. There is
the complete budget due to mechanical tolerances
and delaying tolerances, etc. Our job was to ,.-,

predict whether or not we met that budget and
show that our predictions were accurate. ..
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COMPUTER APPUCATIONS

DIGITRL SILATION OF FL BLE AIRAFT RESPONSE T) SYMMICRL

AND ASY*WMCAL EUNWM R .-..Q.SS

Tony G. Gerardi
Air Force Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Chio

;.- . f %.-.

A method has been developed for determining the dynamic response of -71.%
a flexible aircraft to symmetric and asymmetric runway roughness
during takeoff or constant speed taxi. The mathemratical model has
been programed and run on a CDC 6600 digital computer and uses a
Calacmp plotter for part of the output. The solution algorithm is .
a direct three term Taylor series solution yeilding a ratio of
solution tine to real time of 1.75. Peak value vertical accelera- .:.

ticn level cirparison of simulated results to limited measured
results were satisfactory. The mathenatical ndel dmkonstrated the -'. .
capability of accomplishing the intended purpose of locating the
rough areas of a runway.

INTROUCTItN

A ommen problem that occurs during take- 10
off and taxiing operations of aircraft is high
acceleration levels caused by a rough runway.
Due to these accelerations, runways must be
evaluated with respect to roughness in order
to ensure timely pavement maintenance to 10
control aircraft structural loads and fatigue.
Also, rough runways adversely affect the normal

"-" functional ability of the crew members by .? .',
* reduced instrument readability and reduced crew

omfort. Figure 1 shows criterion' used to set
maximum allowable vertical acceleration levels 1
from a human comfort standpoint. Reference 2 0TOLERANCE
addressed the runway roughness problem at L'/T1.w=r
considerable length and contains the develop- -

-. j ment of a mathematical model and subsequent
cmczlputer program called "TAXI" to simulate the 0 dr

74 dynamic response of aircraft to runway rough- 1-
ness on a symmetrical runway. For a symmetric
runway, only one runway profile is required.
Normally this is sufficient for representing a
paved runway. With the advent of the A"'.(Avanced Medim SI Transport) and in some 2"" %
cases with conventional airplanes operating off

of semi-prepared or very rough paved .urfaces,the rolling motion of an aircraft became 
-. '.5_

significant. This rolling motion was the
result of operating the aircraft on an asymmet-
ric runway. Therefore, in order to properly .
simulate this response, it became necessary to , ,,,.,iI ,1v ,,,,,,, ...
include the runway profile encountered by each 1 10 100 1000 -
landing gear. FREQUENCY, CPS

The primary purpose of this sty was to Figre . n Cgon 1.rttirV
develop a computer program capable of simula- ler o a
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ting an aircraft during takeoff from or amo- is controlled by the landing gear strut forces,
stant speed taxi over an asymmetrical runjay. lift, drag, thrust and the resisting parameters
The mathematical model includes roll, pitch, of aircraft mass and inertia.
vertical and horizontal translation as rigid
body degrees of freedom, plus a vertical trans- The landing gear struts are nonlinear,
lation degree of freedom for each landing gear. single or double acting oleo pneumatic energy 0
In adition, up to 30 flexible airplane modes absorbing devices (Figure 2) and are represent-
can be included in the simulation. ed in the model as the sum of the three forces,

__OUTER CYLINDER

AIR ORIFICE SUPPORT TUBE

HYDRAULIC FLUID .
.0

SORIFICE'."'.":.... "

LOWER BEARING
L / MS"ERING TUBE.. .,-.,-

: ..-.. . .

INNER CYLINDER

Figure 2. Typical Single Acting Oleo neuimatic Landing Gear Strut

General Airplane/amway Model pneumatic, hydraulic and strut bearing friction
forces. The pneumatic force, resulting fran S

The general model is represented as an compression of the air in the upper cylinder,
asymmetrical body with a nose, and a right and which is the largest of the three, is represen-
left main landing gear. Each landing gear ted by the equation:
strut is assumed to have point contact with the
profile and it is assumed that each landing (
gear traverses a different profile. The model FA =  V S (ilor Single (1)
has aerodynamic life and drag, and thrust - Chamered Strut)
applied at the aircraft's center of gravity.

The airplane is free to roll, pitch, where:
plunge and translate horizontally and, in addi-
tion, each landing gear unsprung mass is free P = the fully extended strut pressure
to translate vertically. To these rigid body
degrees of freedom, up to 30 flexible nodes of V = the fully extended strut volume
vibration are included. The airplane motion

208 .
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A = the pneumnatic piston area where:

S = strut stroke TD tire deflection

.. % .'.. % % -. - -. %."

The hydraulic or damping force is given by k =linear tire spring constant
the equation: 0

is runway elevation data (See Figure 3) .
ph A3 isinput into the model in two foot length

F S SI (2) increments. The profile is made continuous by
2 (Cd Ab)' fitting the following polynomial through the

three elevation data points and the slope at " ""
where: the end of the previous profile segnt:

ph = density of the hydraulic fluid y(x) = a1 + a2 x + a 3X
2 + a4 X3  (7) O

-- = the hydraulic piston area where:

iA = effecti u orifice area (constant a,2,3,4 = coefficients derived from the .. -

forifice minus metering pin area) elevation and slope data

Cd = orifice coefficient (use .9) This is done for each of the three lines of
runway profile data. O

= strut piston velocityof1tn
Rigid Body Equations of Motion. ..

SThe third strut force is the strut bearing
friction force and is expressed as follows: The differential equations of ntion for " .

the mathematical model were derived by applica-
FF = ( J u+ i IF1) (3) tion of the method of Lagrange. The generalform of these equations are shown below and

where: corresponds to the notation shown in Figure 4.

*.=the sliding coefficient of friction Z= (Fs1  +Fs 2 +Fs 3 +L-W)Ac (6)
(usually .1) [c.g., vertical acceleration] "'-.".-.

Fu and F1 = upper and lowr bearing forces Z (F - Fs, - W.)/ landing gear (9)
required to balance the 11 i

lateral loading = (Ft2 -F2 -W / Vertical (10)

S=strut velocity (F 3 - 3 3

S= (FS1 A + Fs2B + F,,e - F53C)/. .(12)
FS Xa (4) [pitching acceleration]

Xb +S Xa ~= (Fs3 - F2CIx(3
F (1.0 - +) (5) (rolling acceleration] (13)
u

where: x F - F,, - FAD ) (14) :) (,

Fs = total wheel drag force [horizontal translation acceleration)

where: %
Xa = strut piston length F F"'lai g s t

Y = minimn bearing separation s1 s2 53 forces 1.su

,S strut stroke Ft. F=, Ft tire forces
The force FS can be large during landing M W# iy, lx = aircraft mass, weight,

% spinup or braking. During taxi however, the 0 D and pitc ing and roll ess aihtrstrut friction force is very small compared to inertias - -the total strut static force for symmetrically r
loaded struts. For this veysnails usually o= uspM landing gear-
neglected in the simulation (See Reference 2). Wwg W2 W3  u ghts

e.4

The tire force is represented by the As B, C, e = moment arms
linear equation: ,B-.

FT k h (6) L, FT, Fm, Fm = lift, thrust, and tire .
aerodynanic drag forces "I
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TAIWYLINES OF MEASUREMENT .

70001-

(al TYPICAL RUNAY (NOT TO S CALE

________RUNWAY SURFACE

SUBGRADEDATUM

(b) TYPICAL RUNWAY ELEVATION PROFILE
Figure 3. Thwnway Profile Representation

9PITCH ANGLE, + NOSE DOWN ZPMR 0 *.

Z -VERTICAL TRANSLATION, + UP

ROLL ANGLE, + RIGHT GEAR DOWN /FLEXIBLE CARRYTHROUGH

ZPN L

SML CML .-

LIFT

IYIn

/ THRUS
* ,- WEIGHT +

Figure 4. Free Body Diagran Used to Develop the Matematical MO&1
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The subscript 1, 2 and 3 corresponds to the the .m, values of x and k to cbtain the next
nose, right main and left main landing gears point in the solution.

S.-, respectively.

[FT and FD act through the center of OLT

gravity] The results of the computer program are
displayed in two form, one, a standard digital .. %

S. Flexibility Ekuations of motion listing, and two, a Calomp plotted tine
+history of the runwa profile, the pilot's

4 -=ils2 i2s2 i3s3 station vertical acceleration and the center-

*" i24 q, for the ith mde of-gravity vertical acceleration.

-- :Many simulations have been made using the '0
where: math=atical model described herein. Included

-geeaie sin this paper are several simulations of a
Mi the generalized mass large commercial jet, ubtid were of interest:

&il' i2' &i3 = nodal deflections at gear Figure Profile Remarks ... %.*location 1, 2 and 3
= m f 6 1-cos dip Taxi Head-on

=,dnpng.acor7 1-cos dip Taxi 450,.-. C = damping factor ,

8 Fough Commercial Without a roll ~qi' 4i, % = generalized coordinates and Airfield degree freedon -..
their time derivatives

9 Rough Commercial With a roll
The sign convention is as follows: Airfield degree freedom

Z = Vertical Displacement + UP Figure 5 is a drawing of the 1-oos dip
E"8 = Pitch + nose down used in these simulations. The dip is oontin-

R -- ll + roll right

q = Deflection Due to Bending + up

X = Horizontal Translation + forward

Solution T achnim-

The technique used for solving the coupled
nonlinear differential equations of motion that ,"
describe the sinulated aircraft is the same as S.

described in reference 2; a three-term Taylor
series. For exmple, the equation: ,

x= - -x (16)

The three-term Taylor series representa-.-
ticn can be written as: -'

= c (At +,~ At 2  Figure 5. (I-one) Dip used in Simulations
x() + (At) + x ( )  (17)

(I) -I) auous laterally across the rzway. In this way ,.

where: I = 1- N the "trough" can be approached at any angle by
inputing the appropriate runway profile data.

The values for x, k and x fran the previous .. %.

step are substituted into equation (17) and a Figure 6 shows the plotted results of a .

new value for x is obtained. Differentiating simulated large commercial jet during a 50 foot
equation (17) we obtain for the velocity x, per second constant speed taxi over a 1-cos
the expression. dip. The approach angle was 900. The madimn

vertical acceleration at the pilot's station
M + (I)(At) (18) was slightly over 1g and occurred after the , ' ,

Xii) nose landing gear had ompletely traversed the '. %• . ~dip. The entr-of-gravity verticl acoelera--r..
The values for x and x are then substitut- dip. Thu of-gravi t ti he---

ed into equation (14) and a new value of c is the no landing gear passed tugh the "nt-hn
found. This entire process is repeated with e 1dh
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bottan of the dip.

Figuzre 7 shows the plotted results of the
same simulation except the approach angle was
450 instead of head-on. The peak pilot's

station acceleration occurred at the same point
in time but was approximately 10% larger. The_ _ _

peak center-of-gravity acceleration (.6g) was - --
lower, and occurred later than in figure 6. In
fact, the c.g. acceleration of figure 7 is in
phase with the P.S. acceleration. - -.-..

It should be pointed out that for the - "
airplane being simulated, the 50 foot per 0
seonmd speed "tuned" the bunp wavelength (50 -
feet) to the aircraft's natural pitching fre- C- -- -

quency. In figure 7 the effective dip wave- _______,-

Lzngth was 70.7 feet and therefore it was
traversed at an "untuned" speed. Rmning the Z_
simulation of figure 7 at the tuned speed of 70 - -

feet per second, the acceleration levels were _c,___'

1.7g and 1.2g at P.S. and c.g. respectively. - -

Figures 8 and 9 show the plotted results
of the sate aircraft traversing a paved but z 91 - .
rough runway profile without a roll degree of
freedcxn and with a roll degree of freern .o. -
respectively. Both runs were made at the -on-_ cc.-

stant speed of 125 feet per second, because - -
this speed produced higher levels of vertical U
acceleration for this airplane on this partic-
ular runway. Cceqpariscn of these two figures a._
shows a significant increase in the vertical
acceleration at the pilot's station (P.S.) at .
different locations on the runway. For example, I. 99
at T=-46 seconds, the P.S. acceleration levels *,

more than doubled when 3 lines of profile were 2

used. This is attributed to the fact that the
* profiles seen by the main landing gear at these -

-

runway locations ware rougher in the latter ...
case. Figure 10 shows the Power Spectral -
Density (PSD) levels of each line of survey for 09
the Washington National runway. A PSD is a IEoUcO fREaUcNCY-RAo/FT
measure of the relative roughness of a runway
versus frequency. It can be seen that the PSD
level is significantly different for each line WAVELlGT"I h-IT
of survey. Differences in elevations of the
three profiles account for the change in the Figure 10. PSD of Washington National
aircraft's dynamic response. Airport 'urway 36

TABLE I Ccaparisons of Simulated and Experimental Data .

P.S. Vertical C.G. VerticalAcceleration Acceleration

Eperimental Time Exp Sim. Exp Sim.
(sec) (g's) (gi's) (g's) (g's)

6.0 .90 .74 .55 .35

14.3 1.30 1.12 .80 .40

20.5 TAK•FF

Note: All measurements are peak to peak. ..

214

%., %+ % %

% Z. %% ." %,

P.'. 'I.," ';''."- .... . ..- " -" " -". .. " • .... '.-. .... .. , ....." • - : ...... .,

_., ++,_ ,_.-",_' -"-"-; -',, -. ,.., +'" ... > ,... . _, ,_ ., -. ,, ,, -. .+ , -0



Limited experimental data was available was not possible. Howver, 'Table I shows that
for one aircraft. Figure 11 shows the actual cmlparison of several peak values of vertical
time history piots of vertical acceleration accelerations at the P.S * were within 15 per-
m easured during a takeoff of a large anmcrcial cent. The ccziparisons of C.G. vertical acce-
jet at 120,000 pounds gross weight frczn a rough erations were not as good. In the sixmlationk
paved runway. Figure 12 sho~ws a simulation of the accleration levels were lower. It app)ears
the sawe aircraft under the sawe oonditions. that main gear strut pressures on the actual
Scue paramieters of the test aircraft ware un- airplane ware lowr than that sinxilated. This.'..V

* known, such as exact strut and tire pressures difference would cause the higher response in .. A.
and actual inertias, therefore exact sinulation the plunge mode.

4. 1.45 g's

Tail location Vert. Acc.

H5seo~ndsH

* 0d
C.G. Vertical Acceleration

:Rotation

Figure 11. Measured Response of a Boeing 727-100 Takeoff at Wash ington National
Airport Runway 36

IL

z.U a
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NOZE CEPR TRACK~

- 06STANCE 179 590 1233 20960

0 StIE0 59 106 151 195

0.00 5.00 16.00 1 5.00 20.00 2A.00'
TIME (SEC.)

Figure 12. Sirsulated Response of a Boeing 727-100 Takeoff at Washington National
Airport Runway 36
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In summary, a mathematical model has been 1. Goldman, D.E., and van Gierke, H.E.,
formulated and programed for a digital computer Effects of Shock and Vibration on Man, Volume
and is capable of simulating most flexible III, Chap. 44, Shock and Vibration Handbook
aircraft traversing an asynmetric runway pro- (C.M. Harris and C.E. Crede, editors) McGraw
file during constant speed taxi or takeoff. Hill Book Co., N.Y. 1961.
Three different aircraft have been simulated .'..'A
and ccmparisons have been made with experimen- 2. Gerardi, A.G., Lchwasser, A.K., Computer
tal data. Program for the Prediction of Aircraft Response

to RJnway Boughness, AFPL-TR-73-109, Volume I N"
Based on the simulations made, the and II, Air Force Weapons Laboratory, Kirtland

following conclusions were drawn; AFB, New Mexico, Septarber 1973.

1. The roll degree of freedom can
have a significant effect on the pilot's
station and center of gravity vertical acceler-
ation levels if the runway profile is asynme-.
tric. The degree of severity of the acceler-
ation is dependent upon the degree of the run-
way asymmetry.

2. Comparison of the simulated
"dC aircraft response with the limited amount of

available test data was satisfactory. The
'K roughest parts of the runway were identified

and as in the test, pilot station acceleration
levels exceeded the +. 4g criterion. If exact %
strut and tire pressures and inertias were
known for the test aircraft, the simulated C.G.
response would have more closely matched the
experimental data.

The simulated takeoff took an additional6
5 seconds to reach rotation speed. It is
assumed that the actual test aircraft weight
was less than 120,000 pounds, because during
this test, a series of runs were made with the
fuel weight at the beginning of the series

-.- - being 120,000 pounds. Therefore some of the
fuel had been burned off. The fact that the
airplane was lighter than that simulated would
also ontribute to the difference in C.G. '-
response. Also, using a 150 flap setting
changed the value of CL, which would result in
a shorter takeoff distance.

3. This computer program appears to
be a very efficient technique for locating the
rough areas of an asymmetric runway. Using a
CDC 6600 digital computer, a typical cminer-
cial jet takeoff simulation with 10 flexible
modes and a time interval of .001 seconds
required 70 seconds of CPA cliputer time,
which is just 30 seconds over real tine.

4. With the addition of the roll '6
. degree of freedan, it now becces possible to

- .. expand the caeputer program to obtain vertical .
accelerations (and consequently shears and
'mnents) at vital wing stations such as the 0

-,wing root, and engine and stores pylons. This
would be a natural extension of the study.

-. . ",%,
% V.,
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CHIANTI COMPUTER PROGRAMS FOR PARAMETRIC

VARIATIONS IN DYNAMIIC SUBSTRUCTURE ANALYSIS*

A. Berman and N. Giansante

Kaman Aerospace Corporation
Bloomfield, ConnecticutQ

A method and computer program description for parametric variations
in dynamic substructure analysis are described. The method models
the individual components of a system, forms the appropriate system % ~
interface coordinates and calculates the system dynamic response at
particular frequencies. Application of the method for prediction of
the dynamic response characteristics of a helicopter transmission
and a comparison of results with test data is also included.

INTRODUCTION (3) Those at which a force is applied
or dynamic response is specifically

Substructure methods employing eigen- desired.
solutions of the separate components arepr
frequently employed in the dynamic analysis This reduction in the number of coordinates is
of complex structures. phen appropriately performed only once at each frequency of in-

Sapplied, they are convenient and economical. terest with no loss in the validity of the
analytical model, regardless of the extent of

The computer programs described in this this reduction.
paper illustrate an implementation of an
alternate technique which, under certain con- The other important feature relates to the
ditions, can result in significant additional ease with which changes may be studied. Struc-
savings. The primary limitation on the tural modifications such as local mass or
applicability of this method is that solutions stiffness changes, the addition of springs or
are obtained at individual frequencies of dampers between components, addition of vibra-
excitation. For problems in which the dynamic tion absorbers, changes in boundary conditions
response of a linear complex structure and may be exactly modeled at virtually no computer
modifications of it are desired at a relatively cost and without performing a new modal analysis
small number of discrete frequencies, this for each change.
method has some advantages over the usual modal
approaches. The CHIANTI system was developed for use

in a study of the noise and vibration of a
The method which has been implemented in helicopter gearbox. This application satisfied -j.

the CHIANTI program has two important features, the limitation that only a small number of
The first of these relates to the reduction in forcing frequencies are important. The con-
degrees of freedom. The analysis of each basic figuration was naturally quite appropriate to
component is carried out with as many degrees a substructure type analysis. The case and
of freedom as is necessary for a valid analysis. each of the shafts were treated as a substruc-- .
When the resulting analytical model is used, ture which interfaced the other components at
however, the number of degrees of freedom may the bearings and gear meshes and could be
be drastically reduced and must include only: reduced to an analytical model with a small

number of coordinates. It was desired to
() Those which interface other study such effects as bearing stiffness, mass

components, and stiffness changes in the shafts, case
vibration absorbers, mounting characteristics.

* (2) Those which are to be affected In order to predict radiated noise, the case
by changes. surface responses were desired, but except for

the interface coordinates, virtually all the
remaining degrees of freedom could be elimin-

YThls work was performed under Contract No. ated. The program system was used quite
DAAJ02-74-C-0039 for the U. S. Army Air sces l T po"yew"du

Mobility Research and Development Laboratory, successfully.

Eustis Directorate, Fort Eustis, Virginia.
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The purpose of this paper is to present each of these elements is independent of the
the theoretical rationale behind the CHIANTI number and location of the other degrees of-.a
system and to describe the architecture and freedom. This must be true since this quantity
operation of the programs. may be directly physically measured on the

actual structure. This characteristic is not
true of the impedance matrix since the numeri-

THEORETICAL BASIS cal value of the individual elements are B

specifically dependent on the number and loca-
A linear structure is often represented tion of all the other degrees of freedom of

in the frequency domain as a finite element the analytical model. .a

model in terms of an impedance matrix. For
* viscous or "structural" damping the impedance Thus, the criteria for a valid impedance ~

matrix may be alternately represented as: matrix is that the elements of its inverse
correctly represent the true response char-

Z W2M+iwC + K (la) acteristics of the structure. This argument
leads to a direct method of obtaining a valid
reduced impedance matrix, as follows:

or

Z=- 2t4+( gK(b (1) perform a structural analysis using-W M (1 ig)K(conventional methods to obtain a
valid, full size, impedance matrix

where M, C, K are the mass, viscous damping, at each frequency of interest, Z(w).
and stiffness matrices, respectively, and w,

are he fequncy f moion ,'T andthe(2) Invert Z at each w to obtain valid, ..
i, g full size mobility matrices Y(w).

structural dampinq coefficient. Alternately, a modal approach or a
The method used here makes no distinction usecto otgain tehnqumy e6

in the way Z is formed provided that this ue ooti ~)
impedance matrix is an adequate representation ()Slc lmnsfo tec

* ~~of the structure. This will be discussed () Slc lmnsfo tec
below. The starting point for the analysis corresponding to the coordinates to

a vli imednc mari fo echbe retained. These elements are then
*requires avldipdnemtifoechformed into a new reduced mobility r?. .P

substructure for each frequency of interest.
If the impedance is formulated as in (la) or matrix, Y R(w).
(lb) and the degrees of freedom are adequate, () Terdcdipdnemti ste
Z at any frequency is easily formed by matrix formed by inversion of YR:.
addition.R

From the point of view of the dynamicist, z( M (4)
the criteria for a valid impedance matrix is R"3) YR '
that it correctly predict the motion at the

41coordinates of interest at each frequency of It is to be noted that ZR is valid only at *,

interest. The relationship between the applied the frequency at which it has been computed. ,u 4

5 *

forc an th stuctual espnseis:There is no necessary or required interpreta-

Zy = f (2) tion of Z R in terms of mass, damping, and
stiffness matrices. (This is discussed in some

where y and f are vectors representing the detail in Reference (1)). Z R represents a
displacements (or rotations) and the appliedphscl ytewiha tefrqny -..

forces (or moments) at the respective co- behaves precisely as the system under study.
ordinates. (In general, all the matrices and
vectors are complex.) Except for an undamped The reason for specifically obtaining the
system at resonance or for w = 0, Z will not impedance matrix of the reduced system is that

*be a singular matrix. Thus: the impedance of a complex structure is ob-
tained by simply adding the impedance matrices

y = 1f Yf (3) of the separate components at coordinates where
the deflections are common. If Za, Zb Z5 are

wher Y s te mbilty mtri an isthepartitioned impedance matrices of subsystem a,
invese f te imedace atri. Nte hatb and the complete system, respectively, and

while Z may usually be represented as a simple ()refers to interface coordinates, (^) refers
function of w, there is no such simple for- t oitraecodnts n 2 eest
mulation for the mobility (in terms of the touln beoneninterface oriaeand (on) trfest
basic Ml, C, K marcs.coordinates then (see Reference (1)): .~.

The elements of the mobility matrix have
individual physical significance. Each element .. i
represents the displacement at a point due to
force at some point. The numerical value of

21.8
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Z 2 a SYSTEM OVERVIEWa a 1
[T IThe CHIANTI system consists Of two major

Z 2 + 2b (5a) programs called ADORED and SYNTH which uses a
s 17  b coimmon data base. The ADORED program is

2 designed to modify the structural characteris-
T tics of the basic components stored in the

b bJ data bank. The SYNTH program synthesizes the
impedance and mobility matrices of the corn- ~C

* and Y = Z (5b) plete system. -"S*

*Note that the substructures must be modeled Figure 1 presents a schematic of the --

*as if they were unrestrained at the interface CHIANTI Program System. Impedance matrices
coordinates, for the various components comprising the

structure are formed at the frequencies of-
There are several considerations involved interest and stored, with appropriate iden-

in applying this technique to practical tification, in the common data bank. The
analyses: ADORED and SYNTH programs operate on these

stored impedance matrices according to the
(1) It is not important how the reduced selected options, receive new identifications

mobilities are computed as long as and are optionally stored in the data bank or
they are valid, used in the current analysis. The original

component impedance matrices are retained in -.

(2) For the method to be practical, the the data bank.
number of reduced coordinates must
not be so large that matrix in-
versions become prohibitive. CHIANTI PROGRAM SYSTEM '.*

(3) Local impedance changes due to
addition of spring-mass systems or
boundary condition changes are
simply added to the reduced corn- DATA

STORAGE.ponent impedances. BN . ~4
(4) When adding impedance matrices the ~V

corresponding elements must repre-
sent deflections in the same
direction.BAI

(5) The impedance elements add when COMPONENT ,.'

their deflections are equal; thus ADORED IPDNE
when components are separated by COMPONENT
spring-damper devices, the impedance MODIFICATION
of this device must be added to one 4*

of the substructures prior to
synthesis. MODIFIED

C01IPONENT
The CHIANTI programs automatically and IMPEDANCES

conveniently perform the coordinate reductions,
coordinate transformations, addition of
impedance changes, impedance matrix addition
for a number of subsystems, determination of '
the mobility of the combined system. SYNTH

*COMPONENT IMPEDANCES
The ability to accommiodate structural SYNTHESISAN

modifications including local mass or stiff-
ness changes, the addition of springs or
dampers between components, addition of vibra-
tion absorbers or changes in boundary con-[ ditions is a valuable feature of a structural
dynamics program. With the impedances of each SSE
element at frequencies of interest stored in a CALCSAONS
data bank, variation in structural parameters
of the individual components can be readily e
made. The CHIANTI computer programs allow
implementation of these capabilities without
performing new and costly analyses for each 1*'
change. Figure 1. CHIANTI Program Schematic

6%
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ADORED PROGRAM Heading Card

The ADDRED program has the capability to Col 21-80 Arbitrary heading
modify the characteristics of any dynamic
component as follows: Card 2 Identification of the component

which is to be modified. The
(1) Add structural damping. impedance matrices for the

component which have been pre-
(2) Add vibration absorbers or concen- viously stored in the data bank

trated masses at selected coordi- are retrieved for modification . -.
nates. and retained intact in the

data bank.
(3) Add spring-damper systems between

structural components. Card 3 Identification of component
after modification. The modi-

(4) Add spring-damper systems to ground fied impedance matrices with -
at selected coordinates, new identification are *- I

optionally stored in the data
(5) Perform coordinate transformations, bank.

(6) Perform a dynamic coordinate 1. Add Structural Damping - Structural
reduction, damping may be added in the form igK, where K

is simply the component impedance matrix at
(7) Convert an impedance matrix to a zero frequency which is stored in the data h'

mobility matrix and vice versa, bank. Thus, the component impedance matrix ''
with the addition of structural damping at a

All of these changes are implemented through particular frequency of interest, w, is:
a simple set of coded instructions to the
computer. Items (5)-(7) are to perform such
necessary and convenient operations as con- ZMod(w) = Zorig(w) + igZorig(-O) (6)
verting coordinates from local to globalrig..rig
orientation. Additionally, the efficiency of where g is the structural damping coefficient.
future computations can be increased by re-
taining only degrees of freedom of interest This modification is implemented with
without loss of accuracy. only the input cards shown below. The program
Description of Program Options automatically seeks the original impedance

matrix and the proper impedance matrix at
The program features listed may be w = 0 and performs the operation of Equation S

implemented with a minimum of input cards. (6). It then returns the new impedance matrix
with its new identification to the data bank.

The first three input cards required for
program execution are common to all the Input Card 1
options.

Card Input Col 1-10 Structural Damping Coefficient

Heading Card Input Card 2

Col 1-80 Identification of Component ".
CallI Code indicating which modifi- Ipdnemti tw=0Impedance matrix at w = 0,_ _,,"" " "

cation is to be implemented Z(w=O) KZ w=O 2- K -.-. '-.-

Col 2 Number of items per component 2. Addition of Vibration Absorber or -..

Col 3 Output print option for m - The modification of the component
ol3 Origutin andodtionfi impedance mdancmatrix due to vibration absorbers 0
original and modified impedance attached at particular coordinates involves a

storage option for modified change in both the real and imaginary com- -' "
trices oponents of the matrix yielding:ma trices '""-

Col 4-10 Control of particular frequency {[l - )2 + 4 2 2 2m
or range of frequencies at + - .-

Col 11-20 which modification is to be A22 42 0

implemented. When a range of [1 - ( 4-) & +
frequencies is selected, the
modification is performed at,,..-
each of the frequencies within 2
the range at which a component + i (7)
impedance matrix is stored in [1 - ,, 2 2 2- ' (7)
t h e d a t a b a n k .

-l- , ._,+_4 C
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* where w is the frequency of excitation and 0 Input cards necessary to implement this
* m, and E are the undamped natural frequencies, change are:

the mass and damping ratio of the vibration
absorber, respectively. This change is added Input Card
to the original impedance matrix at the diag-
onal element corresponding to the attachment Col 9-10 Local coordinate number of
point, spring-damper attachment

" The input cards required to accomplish Col 11-20 Spring rate
this change are as indicated:

Col 21-30 Damper rate
" -Input Card

One input card is required for each ,
Col 9-10 Local coordinate number of spring-damper system attached to each coordi-

absorber attachments nate. For a torsional spring-damper system O
appropriate units must be used.

Col 11-20 Undamped natural frequency of .
absorber, 0 4. Add Spring-Damper to Ground - In this

situation, no new coordinate is generated and -
Col 21-30 Absorber mass, m the modified impedance matrix is simply the .-..

original impedance matrix with each diagonal -.

Col 31-40 Critical damping ratio, element modified to include any added spring-
damper impedance; therefore:

One card is input for each absorber on a par-
ticular component. For a torsional absorber Zor+g(1

*." the moment of inertia of the absorber in Mod(' = r l) + k + iwc (11)
,".' appropriate units replaces the absorber mass..,

" a p e t p s aThe input card format is similar to that for a ,

For the addition of a lumped mass at a spring-damper system in series. ,.
local coordinate, the aforementioned cards are
applicable; however, the undamped natural fre- 5. Coordinate Transformation - This
quency and critical damping ratio are omitted option allows for any linear transformation

. yielding a modified impedance matrix of the of coordinates on a particular component. This -
form: option is used to transform local coordinates

= - 'm.(8) into the proper orientation in the global
AZ W2m (8) system for component synthesis. In addition,

it is often convenient to transform coordinates
3. Add Spring-Damper in Series - Adding so they conform to the direction of an applied

a parallel spring-damper system in series with force such as the line of action of a gear
the structure at a coordinate automatically mesh. If the transformation matrix is defined

" generates a new coordinate at the free end of as T, the impedance matrix for the transformed
the system. Thus, an additional row and coordinates becomes:
column are included in the modified impedance
matrix. If k, c are the spring and damping Z TT rgT-I (12),'
rates, the real and imaginary components of TMod  Z T
this system are: where ew= Tyori g Rotations, sign changes

ZR = k and combinations of rotation and translation . ,
R are common applications. Implementation of

and this transformation is achieved with the .
" = iWc following input cards (one card per transformed

I coordinate, T is filled with unit diagonal

The modified impedance matrix becomes: elements for unchanged coordinates):

Attachment Additional Input Card 1 .
Coordinate Column Col 1-10 Number of coordinates to be

i 0 transformed

Zod~ *.(Zorig k + lcw:)....(k+lac) Input Card 2 -

0 Col 1-5 Coordinate to be transformed 0

6-10 Number assigned to the trans-

... (k + lWc) .... 0..;..(k + iwc) formed coordinate

Additional Row (10) 11-17 Coefficient which multiplies a
coordinate used in the trans- N
formation -t P

0
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Input Card 2 of each specified component. Coordinates not
listed in the table are automatically elimi-

- Col 18-20 Number of the coordinate nated for each component as in ADDRED.
which is multiplied by the

. previous coefficient The input cards required for the SYNTH Aprogram are:

21-27 Repeat for each of the orig- 
.

ae

28-30 inal coordinates necessary Heading Card
to the transformation

Col 1-2 Number of components in system
6. Coordinate Reduction - Coordinate -.

reduction must be performed on the mobility 3-10 Frequency control (same as C..
matrix since the elements of this matrix have described under ADDRED program)
individual significance, wherein each element
represents the response of a point due to a 11-20
force at the same or any other point. Thus,

. to accomplish a coordinate reduction the 21-80 Arbitrary heading
impedance matrix for a component must be re-
trieved from the data bank and inverted to System Card 1
yield the mobility matrix. The coordinates
to be eliminated are removed from the mobility Col 1-2 Number of global coordinates
matrix and the resulting matrix inverted to
form the desired impedance matrix with reduced Col 3-5 Print controls "O
coordinates. This can be represented mathe- S C
matically as: System Card 2,3

'." Z=~rlg- Col 1-80 Identification of Impedance

"-gorig Matrix

", "Col 1-80 Identification of Mobility• - YMod = (Yorig)Reue Matrix
MiReduced (13) ..

"" Yod- Component Cards ,
Z.educededucedCol 1-16 Identification of First

. Component
The input cards necessary to achieve coordi-
nate transformation are: 21-36 Identification of Subsequent

Components
Input Card V

Etc
Col 1-2 Number of coordinates to be

eliminated as many cards as necessary with maximum of .
16 components. "-

3-5 Coordinate numbers to be
eliminated Coordinate Table

6-10 Continue with coordinates to Col 1-2 Global coordinate number
11-15 be eliminated

3-5 Corresponding local coordinate ' .4
Etc number of first component p. .%

7. Invert Matrix - This option allows 6-10 Etc for subsequent components
inversion of impedance matrices to yield the

mobility matrix and the reverse inversion to 11-15 0
yield the impedance matrix. The only cards
required for this option are the heading card
and identification cards as previously APPLICATION
described. ...

The application to the gearbox mentioned .
in the introduction will be briefly described "-.g'=

SYNTH PROGRAM as an illustration of the capabilities of the
system. In addition to the previously de- 0

The essential features of this program scribed computer programs, programs were
. relate to component synthesis. This program necessary to establish the primary data bank.

synthesizes the system impedance and mobility IMODEL, which is also a part of the CHIANTI
matrices of the complete system. The complete System was used to generate a model of the .

- system is defined by a table of global coordi- transmission case using the method of Incom-
nates and the corresponding local coordinates plete models, as described in Reference (2).
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Because of the structural and geometric corn- Table 1 presents a coordinate table of
plexity of the case and the need to include the transmission system including the system \
gear mesh excitation frequencies extending to coordinates and an identification and coordi- P
3000 Hz, development of a cost effective and nate representation of the individual corn-
reliable finite element model was considered ponents. As an example of the data shown,
unlikely. Additionally, an actual trans- the original impedance matrix of the input%
mission case was available for testing, shaft has been modified to include the addi-
prompting application of the incomplete model tion of springs attached to the input shaft, p

* method. This method uses measured normal which are representative of bearings at these
*modes, natural frequencies and an intuitively locations, at local coordinates 2, 89 14 and

developed approximate mass matrix to yield an 20. As discussed previously under the de-
analytical model of the structure. The re- scription of the program options, number 3, .

sulting analytical dynamic model of the case new coordinates are established at the free
correlated with frequency response test data end of the springs with coordinate numbers 100

* over the range of interest. One further pro- plus the old number. Thus, the coordinate -

gram, RSVP, was used to develop free shaft which was originally numbered 2 becomes co- '

impedance matrices for coupled bending and ordinate number 102. Coordinate number 3 on
*torsion modes. The RSVP program considers a the input shaft had been previously trans-

lumped mass representation of the shafts with formed, using the ADORED program option 5,
gears attached, generates mobility matrices to the line of action of the spiral bevel
of the components at frequencies of interest gear on the input shaft.
and finally inverts these matrices to yield
the component impedance matrices. Special The first column in the table indicates ~

* purpose programs to generate impedance matrices the system or global coordinates and the re-
*may be developed for any application using a maining colums represent the local coordinate

standard subroutine to enter these matrices numbers associated with the respective corn-
into the data bank. ponent identified by each column heading.

Multiple entries in a row headed by a global
*Figure 2 presents a schematic of the coordinate indicates an interface between the

helicopter transmission analyzed. An input components at the local coordinates of the
spiral bevel gear mesh drives a spur gear set respective elements. For example, at system
which, in turn, drives a planetary gear system coordinate 1, a connection exists between the
whose output drives the rotor shaft. Sets of input shaft at local coordinate 108 and the
roller and ball bearings retain the various transmission case coordinate 24. The SYNTH
shafts to the gearbox case. The ring gear program eliminates the unwanted coordinates on ~'
which meshes with the planet gears is also the individual components yielding a reduced
attached to the transmission case. impedance matrix, performs matrix addition for

the subsystems and generates the mobility of ~
the combined system. This system mobility
when multiplied by the applied force vector
yields structural response of the system.

- ROTOR SHAFT '

-PLANET CARRIER V

PLANET GEAR%%

SPUR GEAR

SPUR PINION

SPIRAL BEVEL
GEARINUSHF

SPIRAL BEVEL -,
* PINION

FWD ' f SYSTEM COORDINATE17(LB)* INPUT SHAFT COORDINIATE 3 (LOCAL)
SPUR BEVEL SHAFT COORDINATE 1 (LOCAL)

Figure 2. SH2 Main Transmission Schematic
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TABLE 1 TEST CORRELATION . .
Planet System Excitation at 348 Hz, FX

To validate the dynamic substructure %
Applicable Frequency Range = 348.0 Hz Only analysis method, analytically derived vibration .%

characteristics were compared to simulated op-
System Impedance Ident SYS IMP 348 2 erational test data for a Kaman SH-2D hell- .
System Mobility Ident SYS MOB 348 2 copter main transmission. Acceleration %

response of the transmission case, measured .
Coordinate Table normal to the surface, at fourteen selected

points was compared to the respective analyt-
System ically obtained response. Figure 3 presents

IN1 OUT1 BVLS SPR- CASE a comparison of measured and predicted case %
80TS -80S PR-8 80TS GT1 surface accelerations in peak g's for excita-

CK3 OTS tion applied at the planetary system funda-
mental frequency of 348 Hz at 80% rotor rpm
and a torque loading of 9120 in-lb. The

21 10 0 0 0 23 analytically predicted and measured trans-
2 120 0 0 0 23 mission housing accelerations show reasonable

4 114 0 0 0 21 agreement promoting confidence in the dynamic

5 0 102 0 0 29 substructure analysis method.

6 0 110 0 0 35
* 7 0 113 0 0 30 - MEASURED- - .EASURED

8 0 121 0 0 36 MEASPREDE %
9 0 0 103 0 26 ---PREDICTED

10 0 0 112 0 25 ..
11 0 0 109 0 28
12 0 0 118 0 27
13 0 0 0 101 31 __o_-.

14 0 0 0 107 32 , _
. 15 0 0 0 104 33
. 16 0 0 0 110 34 1.0 1

17 3 0 1 0 0
18 0 0 8 2 0

*19 0 5 0 0 0 A20 0 16 0 0 0-: -"
-. 21 0 24 0 0 0I

22 0 12 0 0 0 -.

23 0 14 0 0 0
24 0 0 0 0 1 L* 25 0 0 0 0 3 1 3 4 1 11 12 13 14 15 16178 19 20 -

*26 0 0 0 0 4 STAION 1ISERS27 0 0 0 0 5"% ,(-
28 0 0 0 0 11 Figure 3. Measured vs Predicted Case
29 0 0 0 0 12 Acceleration for 348 Hz
30 0 0 0 0 13 Excitation- -
31 0 0 0 0 14
32 0 0 0 0 15
33 0 0 0 0 16 PARAMETRIC STUDY
34 0 0 0 0 17
35 0 0 0 0 18 The analytical method described in the
36 0 0 0 0 19 paper allows rapid and economical evaluation _
37 0 0 0 0 20 of transmission design changes. Once each
38 0 1 0 0 0 basic mechanical component is modeled, modifi- "
39 0 3 0 0 0 cations can be readily effected without re-
41 0 8 0 0 0 evaluation of each element. This technique
42 0 120 0 11 410 presents a significant advantage over the
43 0 126 0 14 0 usual substructure procedures wherein each
44 0 109 0 0 0 component modification requires a new modal
45 0 0 0 5 402 analysis. An application study was performed

which considered effects of shaft mass and
stiffness increases, case mass and stiffness
increases, bearing stiffness reduction and
bearing relocation. Results of the trans-
mission design changes are presented in
Reference (3).

" ~ ~~224 ,,- ,
.,i - .p ,, ....0.

S..

,;. ,,,,',.' .. ..... ".,," ",_,.'._.v.; ,. ',% -'-., ,..,,.% , ,,,;, ,,,,. 2',, V ,- e ":',.w.'.



jiCONCLUSIONS REFERENCES
1. Acomute prgra ha ben dscrbed1. A. Berman, "Vibration Analysis of Struc-

*which has application in the dynamic tural Systems Using Virtual Substructures", a
*analyses of a linear complex structure, The Shock and Vibration Bulletin 43, NRL.

including modifications of it at a small Washington, D. C., June 1973.
* nmbe ofdisree fequncis.2. A. Berman, "System Identification of a

*2. The computer analysis of the linear com- Complex Structure", AIMA Paper No. 75-809,
plex structure can be achieved using a AIAA/ASME/SAE 16th Structures, Structural

* common data bank containing the impedance Dynamics, and Materials Conference, Denver, *

*matrices of the individual components, Colorado, May 27-29, 1975.
thereafter a minimum number of input data
cards are used in implementation of the 3. M. A. Bowes, "Development and Evaluation 0.K
program options, of a Method for Predicting the Vibration

and Noise Characteristics of Helicopterr
-3. The method has been successfully applied Transmissions", AHS Paper No. 77.33-76,

in the dynamic analysis of a helicopter American Helicopter Society 33rd Annual
main transmission where the components National Forum, Washington, D. C., May
consisted of the gearbox case, the shafts 1977..
and gears and a planetary system.
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FREQUENCY RESPONSE ANALYSIS

OF COMPLEX STRUCTURES

Hatem R. Radwan and Palanichamy Shunmugavel

Chicago, Illinois

This paper discusses the use of the frequency response .;

method based upon the Fourier transform theory for "',
dynamic analysis of complex structural systems. The -

application of the method to the analysis of a nuclear
reactor containment complex subjected to hydrodynamic
loads is demonstrated and typical results are presented.
The results illustrate the convenience and effective-
ness of this method and advantages and limitations

-%" of the method as well as other applications are dis-cussed. Several precautions found necessary to obtain

sufficiently accurate results are also discussed. %

1. INTRODUCTION method, used in conjunction with the S'..'.

The direct integration approach, is found
The analysis of complex structures to be particularly valuable in saving ." .

" subjected to arbitrary dynamic loads computer time in the analysis of a
is, in general, a problem requiring nuclear reactor containment structure -,-
great computational effort. The advent for hydrodynamic loads. In addition,
of present day computer capabilities the approach makes possible a consid-
has made possible detailed analysis erably enhanced insight into the struc-
of many structures that would have tural dynamic characteristics, leading
been considered prohibitive a decade to a more satisfactory analysis of .

* ago. However, as computer capabilities the problem. The method is equally
have grown so have the demands placed applicable to other structural systems "
on them in terms of capacity and speed and promises to be an additional power- ,*. *-I

* due to an increased interest in detailed ful tool for structural dynamicists.
dynamic as well as static analysis
of complex structures. The introduction of the FFT algo-

rithm Ill in 1965 enables the efficient ..

Structural engineers and stress and rapid numerical calculation of
analysts are continually searching the discrete Fourier transform and
for more efficient and suitable methods inverse Fourier transform for arbitrary
to analyze their systems. The response functions, which makes the frequency
of a structure modeled by finite ele- response method a powerful practical
ments to dynamic loads is usually tool. It is believed, however, that
determined by modal analysis or by practical application of this procedure
direct numerical integration of the has not been as widespread as it should
governing differential equations. be for structural analysis. It is

- Most commercial general purpose finite recognized, however, that FFT has
element programs available today pro- been used widely and successfully
vide the analyst with the option of in recent years for analyzing vibration .

'2 using either method. In general, test results, particularly in the
modal analysis is preferred unless aerospace industry. It is hoped that -

too many modes are required to adequate- this paper will illustrate the conven-
ly describe the system response to ience and effectiveness of this method
the loading under consideration. and demonstrate its additional practical

value as an analytical capability.
This paper discusses the use

of the frequency response method,
based upon the Fourier transform theory,
for complex structural systems. This
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*" 2. THE PROBLEM The inclusion of the soil in
the structural model was deemed neces- %

The problem described here arose ary for proper evaluation of the struc-
during the analysis of a prestressed tural response in this problem. However,
concrete nuclear reactor containment this led to precluding a modal analysis
structure subjected to hydrodynamic of the system under dynamic loads '
loads. The structure is essentially since too many modes would be required

*" a shell of revolution supported upon to adequately describe the response -. .
a mat foundation, which in turn rests of the structure. It was then found

* upon a stiff clayey soil with firm necessary to solve the problem by
rock at a depth of approximately direct integration of the differential
126 feet. The structural model set equations, a costly process for the
up for the analysis is shown in Figure complex structural model adopted.
1. The model includes the soil to Also, since the natural frequencies
bedrock, which is modeled by finite of the system were not known, it was *-'

solid elements of revolution, while also necessary to evaluate the response
the structure is modeled by thin shell of the system to a large number of
elements of revolution. The analysis excitation frequencies in order to
is made using a modified version of establish the most critical load condi- 
the Ghosh and Wilson program [2] devel- tion for each component.
oped at the University of California,
Berkeley in 1969.

Ki "°-7* --- % 0

Ut , .....

-. 2 *"* * ".

NOV AT

?I -PS . pop

" _ __ FIGURE 2 -NORMALIZED SPATIAL DISTRIB- "i-'""
. ---------4 UTION OF SRV DISCHARGE LOAD "'"" - -

--------- This represented an excessive

.- - - - - amount of computational effort and
an alternative solution was sought.

%- It was also recognized that even if
the natural frequencies of the system -.. .

FIGURE 1- MATHE4ATICAL MODEL FOR were known, the analysis for the load

ANALYSIS OF NUCLEAR cases with excitation frequency coincid- S
CONTAINMENT COMPLEX FOR ing with each of these natural frequen- .

cies would still be an expensive lengthyDYNAMIC SRV DISCHARprocess. The frequency response method ,.* -
LOADS was found to provide a much more satis- '"

The hydrodynamic loads are caused factory and efficient solution.
in the suppression pool by a transient %'""-%- '..
discharge phenomenon associated with
the operation of safety relief valves. 0
The loads are specified as a decayingoscillatory pressure field of relatively "'''

short duration, with upper and lower
bounds for the frequency of oscillation.
Figures 2 and 3 illustrate typical
spatial distribution and time history
variation of the load.
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and "-i-.. ~~N-1 .-.- '-

SRV ANALYSIS 1 " f-j"t- -is
* F(sAw) = fAt) eAWAt~N

SVmu,,m 4... 1.0 me. j=0 •

S =0, N/2 (0a1

or N-1
" oa #" o 2 E f(jAt) _isAwjAt;

j=0 .0 .6 N _''¢'

s 1, 2, 1 - ). .,"0.4 .a .

.a AW = 2wr /(NAt) (4b)

66 ) The fast Fourier transform (FFT) .,=

-. 1s is simply an efficient algorithm to
-e, M wo 4.s R calculate the Fourier transform and
•m , AVAW , W -. the inverse Fourier transform in dis-. -

crete form. In this study a FFT algo-
rithm with radix 2, i.e. N should

FIGURE 3 - TYPICAL LOAD EXCITATION be a power of 2, is used. This FFT
TIME HISTORY FOR SRV corresponds to Cooley and Tukey's
DISCHARGE [11 original algorithm and required -. , ..

N 2 log 2 N operations rather than
3 E A I N SN operations which would be required
3. THE FFT ALGORITHM4 AND ITS USE in the direct method for evaluating

a transform. (An operation is a com-
The frequency response method plex multiplication followed by a

of analyzing a linear system is based complex addition). For the value
upon the capability to numerically eval- of N = 4096 used in this study, FFT .. . .:
uate the complex Fourier transform is about 680 times faster than the
and inverse Fourier transforms of direct method. It is the computational
arbitrary function. The complex Fourier efficiency of FFT that makes the fre- S

- transform F(w) of an arbitrary real quency response method a practical
time function f(t) is defined by (4]: tool in analyzing linear structures.

T tAt present, a standard subroutine
F(w) f(t) w dt (1) for the FFT algorithm is available

at almost every major computer installa-
Here f(t) is assumed to be defined tion. However, several precautions

over the interval o, t i T, w is discussed below should be observed
the frequency in radians/seconds and while employing the FFT algorithm.

i = /:T. The inverse Fourier transform Equations (3) and (4) are based
re-creates f(t) from its transform
F(w): upon the assumption that the function

OD = f(t) is periodic with period T. Thus,
f-t) = 1 F iW t dw (2) for analyzing a structure or system
'1f(t) fw e dw (2) subject to a transient excitation

-W of duration T, a quiet period of
Equations (1) and (2) represent duration (T-T ) should be added at S

a Fourier transform pair in continuous the end of th time history as shown "-- -
form, and allow going back and forth in Figure 4. This quiet period should
between the time and frequency domains, be long enough to bring the system

to rest at the end of T. The duration
If the function f(t) is defined of the quiet period should be estimated

by a digitized record with N points based upon the structural damping
at time increments of At, the Fourier characteristics of the system and the

* transform pair can be expressed in nature of the forcing function. S
discrete form as follows [11: T c n t ie tr l",'. The constant time interval At"-''"

N/2 has to be selected so that the time,. ~is Awjt "'''
f(jAt) =Re F(sAw) e (3) history of the excitation f(t) is
f tR,-ewell defined, and the folding frequency

S=0 (N/2 Aw = v / At) includes the highest
frequency of interest. The total
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number of points N to define the force The inverse Fourier transform then gives
time history should be chosen so as
to be a power of 2, to include an t
adequate length of quiet period x(t) = !H(wo) e + 1(-wo  O
(N At = T) and to have a sufficiently 2 0 2 0
small frequency interval ( Aw = 2n/NAt)
to adequately define the functions But H(-w) = H* (w), so that
in the frequency domain. iwot

x (t) = Re H(wO) e (8)

which is the steady state response
to the harmonic excitation (7). Expres-
sion (8) represents the well known
relation that H(w) is in fact the
complex frequency response for the

-e . , Peal=system. %

T tl " Equation (8) may also be extended
to any linear system such as a complex
structure. If the structure is subjected
to a loading that has a constant spatial
distribution, then the loading time

% variation is represented by a single
function f(t). The response of any
selected component x.(t) may then-ABTAYTRANS IENT % "".

FIGURE 4 ARBITRARY be expressed by a relation similar
FORCING FUNCTION to (5)

" 4. ANALYSIS xi(t) = I f(T) hi(t- T) dT . %.,.*.

The fundamental concept upon
which the frequency response method wr .,it c ep n muisbsd"-Lecope rqec where h (T) is the corresponding impul- -. ,is based, is he complex frequency sive response. It then follows that ' -.
response function [3 1, or transfer
function H(w). For a single degree F H
of freedom system, the response x(t) Xi(w) = F(w) Hi(w) (9)
to an arbitrary excitation f(t) may
be expressed by the convolution integral where H: (w) is the complex frequency
(33: response function, or transfer function,

corresponding to the selected response
component.

x(t) = f f(r) h (t - t) d 5 Two points of interest may be realized

- based upon equation (9):
where h(t) is the impulsive response
of the system, i.e. the response of 1

,4 the system with zero initial conditions for all response components
to a unit impulse 6(t) at t = oof interest may be determined
It follows from equation (5) and the if the system response to any
convolution theorem for the Fourier one excitation is known.
transform theory [4] that Hi(w) = Xi(w)/F(w) (0)

H.(w) = X.()/ww (10) (6X(w) = F(w) H(w) (6) Obviously the transfer func-

where X(w), F(w) and H(w) are the tions H. (w) may also be determined
Fourier transforms of x(t), f(t) and by othe- means, such as from
h(t) respectively, the significant natural frequencies

and mode shapes of the system.
Under harmonic excitation we have H v t o r o• However, the former approach

f(t) = cos wot (7) may be more appropriate in
0 cases where a suitable response

"ae a.F(w) = [(WWo) + (W+Wo) ]is already known, or if too
I-0. 0 many modes are required to %

Thus X(w) = 7r H(w) [6(w-w + 6 (w+w adequately represent the system
0 0 response.
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2. Once the transfer functions
H. (w) have been determined, TRANS FUNS FOR SRV LORDS
tAe system response to any other T" "''L

load excitation time history g (t) WHITE $ - TO 1.4SEC 0"
may be obtained using equation 

O

(9) without having to re-analyze .
the entire system. Thus, the NIORA ILZED .

Fourier transform G(w) of the QUANTITY

load is first determined, and SCALE FACTOR1000.000
the responses xi(t) are then deter- Ia0
mined by utilizing the inverse 0..
Fourier transform capability of 0,0
FFT on Xi (w). This procedure aO
can be used to great advantage 0.4
in cases where many different 0.2
loadings need to be considered, , .... TIM(sEEC)
particularly if only a relatively 0.0 . .00 1.60 2.00 2.60 3.00 %

small number of response components -O.t .
are of main interest. 04

For the problem at hand, as of -0.6
course in many other problems, determin- -0.-
ation of the transfer functions provided
significant added insight into the -1.0
dynamic characteristics of the struc-
ture. Thus all the significant structural FIGURE 5 - NORMALIZED TRUNCATED BAND -
natural frequencies are immediately LIMITED WHITE NOISE TIME
available from the location of the HISTORY - 30 HZ.
peaks in the transfer functions, while
insignificant natural frequencies
are recognized as such. The different
frequencies for the different components
are also just as easy to establish. Typical results obtained using
Thus the critical frequencies of the the frequency response method to analyze
loading are relatively easy to establish the nuclear containment complex consid-.
by comparing the Fourier transform ered are shown in Figures 5 through
of the loading with the dominant peaks 9. While no particular problems were
in the transfer functions. encountered in using the transfer ..

In this manner it was possible functions to determine the system --
t achie coniderableags sine response, several precautionary measures ,...detemining th were found necessary to accurately %computer time by determiningobtain the transfer functions.

sponses of the various components .on.. t%
at their respective critical frequencies To obtain the transfer functions,
without analyzing the entire structure the structural response is first deter-
for all frequencies. The other advan-" .J"[ t ag e of t e f l e i b i l i y g ai ed b ym i n e d b y a d i r e c t i n t e g r a t io n m e th o d "-- -
tagesfor a loading whose time history varia-
this procedure can also be clearly t or a band imit ed

..,. tion corresponds to a band limited,
realized, such as later date assessments white noise time history, shown in ".*..
or parametric investigations. Figure 5. The response of each component

For comparison purposes, the of interest is then analyzed separately
time histroy analysis by direct integra- to determine the corresponding transferfunction by equation (10). The Fourier 0
tion for the problem considered required transform of the band limited white
approximately 40 CPU minutes for each ns ei hnn ge anoise used is shown in Figure 6, and'.,,.,.
frequency (load case) to be analyzed typical computed transfer functions
on the in-house UNIVAC 1106 system. typcae sho ues and 8.n imila

The Fourier transform solution required are shown in Figures 7 and 8. Similar
only 6 CPU minutes for 100 response a nficntronse ompnents . .all significant response components
component calculations per load case o "ntest
after the transfer functions had been of interest.
determined.
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FOURIER TRANSFORMI

WHuTE NOISE -0.05 TO 1.45 SEC 30NZ TRANSFER FUNCTION
-ERIDIANAL FORCE H-PHI 224

X" KNTi amNoNO 0. 0

060

9.. S -.. °=°

i .

"°-_

a fiiemgiuea l auswti elre hnemxmmfe

Hoeeteueoftebn iie fuc ios areto bew dtermined.

"'FIGURE 6 - FOURIER TRANSFORM OF BAND PR_-UEC'--Z

LIMITED WHITE NOISE TIME FIGURE 7 - FOIAL RSPNSER FUNCTION O
HISTORY FO EPNECOMPONENT

~~~~OF INTEREST ,.,.

4:'i Theoretically, any time history The following precautions were found
could be used by the above procedure necessary: tr.-m.n',
to determine the transfer functions,v.provided its Fourier transform has . The frequency w must clearly

afinithe mag e at all values within be larger than ohe maximum fre-the frequency range of interest. quency for which the transfer 0
However, the use of the band limited functions are to be determined.
white noise time history shown in r "st l a rFigure 5 was found to be most appropriate 2. The integration time increment -

in minimizing numerical problems in used in determining the response .
using the FFT algorithm to calculate to the white noie signal must ich
the transfer functions. The use of be sufficiently small to adequately .'
the white noise time history, described represent the structural behavior
by i/wt sin w t, also offered the up to the highest frequency desiredfollow~ng advantages: in the transfer functions.

I . The frequency range of interest 3. The total time duration for which.----
" is easily ensured adequate repre- a numerical solution to the white.'i-- .....
" sentation by specifying only one noise time history should be *.' ..
,-parameter wo . determined is such as to ensure . .

decay of the response, not just
2. The duration of the white noise the loading, to sufficiently

signal that should be considered small magnitudes. Decay to 5%
in the analysis is relatively of the peak amplitude was found -
small compared to other time histor- to be adequate for the containment
ies that would also be suitable system investigated.
for the same frequency range of
interest. This meant significant 4. To avoid initial integration %
savings in computer time. error, the peak value of the

white noise signal should be S
shifted a few cycles away from
the start of the integration
process, as shown in Figure 5,
with a small or zero initial ..- %
function value. -..-. ..

- :~~.-.....,
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TRANSFER FUNCTION
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II Sym rS c Ha Owe W* 0 VERTICAL NOORL ACCELERATION. 205

N8LO SYMiTRIC 4.62HZ. 1.0 SEC.

NOMAL I ZEO .

qUATSCALE VACTGA a0J

1.0

U-,0.6

-0. - " . 4

-°V
-0. .

I F b .0 0 .0 FIGURE 9 -TYPICAL TIME HISTORY OF .
IEENYNrRESPONSE C0OMPONENT .

SFIGURE 8 - TYPICAL TRANSFER FUNCTION DETERMINED USING CORRE-
SFOR A RESPONSE COMPONENT SPONDING TRANSFER 0

of INTEREST FUNCTION

- ~With the above precautionary '-" :

, measures adopted, no problems were
," encountered in determining consistent e'"°.%-

0.0 .2-.-.0

, and reliable transfer functions such .,
as those shown in Figures 7 and 8.A typical response time history deter-

Z mined using the transfer functions
:' is shown in Figure 9, for the load

excitation time history shown in Figuret'
- ' ' li .

".' 3. Checks on the responses were madeby comparing them to those established

' '" by direct numerical integration method ''''' '.,
%.for the same load, showing excellent REFERENCES

agreement.
1 . Cooley, J. W. and Tukey, J. W.,6. OTHER APPLICATIONS "An Algorithm for the Machine

Calculation of Complex Fourier

:The application of the frequency Series", Mathematics of Computation, % .
response method aebove Vol. 19 April, 1965.

is equally applicable to any linear csystem whose loading time variation 2. Ghosh, S. and Wilson E., "Dynamic
is described by a single time history Stress Analysis of Axisymmetric

function. The transfer functions Structures Under Arbitrary Loading*,

• provide most convenient response descrip- Report No. EERC 69-10, College""" "

Stions for steady state loadings such of Engineering, University ofas sow inaF due to eccentricity in California, Berkeley, September,
rotating machinery. The transfer 1969.

" functions may of course also be usedto determine the responses to arbitrary 3. Clough, R. W. and Penzien, J.,

transient loads, as for the problem Dynamics of Structures, McGraw- ..
deycorin themaswel s to e sHill, 1975.

critical load frequencies. Another -'.interesting application of this method 4. Meirovitch, L., Analytical Methods
is the inverse problem of determining in Vibrations, Macmillan, 1967.

the load time history on a structure
from measured response time histories
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% COMPUiER AIDED DERIVATION OF THE GOVERNING DYNAMICAL
EQUATIONS FOR A HIGH SPEED GROUND VEHICLE

J. Patten* and N. Isada
State University of New York

This paper presents a computer aides methodology for deriving the
complete set of nonlinear ordinary differential equations governing
the motion of a vehicle. The method, which was successfully em- %,
ployed to generate the governing equations for a five mass 14 degree
of freedom system, greatly reduced the effort in deriving equations.J
The symbolic manipulating language FORMAC was used in conjunction with
the IBM 360 computer to formulate and list for inspection the complete -k

set of equations. In addition, the equations were made available to
a standard integration technique for solution. Because of the manner

* ~~in which the vehicle problem was posed, constraint equations did not ''.-

* '*. arise. However, a simple extension of the method is described which
will include the case in which geometric and kinematic constraints
are present provided they are in the form of equalities.

Introduction

During the past several years increasing structure over which it is traveling. Once
interest has developed in the new forms of these equations are available a thorough
ground transportation including tracked vehicles parametric analysis of the design can be ac-%
capable of speeds well in excess of 150 mph. complished using a computer. The system
Transportation systems with such high speeds performance can then be evaluated as a pre-
will be required to operate, a major portion of requisite to developing the specifications for -

the time, on an elevated guideway. Predicting the individual vehicle components.
the motion of such systems is a difficult
task. Analytical techniques used in the past
[1, 2] have relied on simplifying assumptions The analysis presented in this paper is a
about the completeness of the vehicle and first attempt to remove simplifying assumptions
guideway representation. The majority of the by developing a methodology for deriving the
effort to date has concentrated on the two complete set of second order nonlinear ordinary
dimensional motions of the vehicle. However, differential equations that represent the
the ride characteristics expected in any high vehicle. **.
speed vehicle will have to be based on its
three dimensional motion. The reasons for In recent years, the formulation of mathe-
this are economical as well as technical. matical models has been facilitated by the use %..~
The cost of land for the elevated structures of the digital computer equipped with formula

*in the congested North-East transportation manipulation compilers (FORMAC), and by the
corridors will not allow the long smooth development of computer programs designed to
transitions needed for comfortable high speed perform a variety of non-numerical operations. .

travel. The problem of analyzing the inter- J. J. Walton [3] has shown how symbolic mathe-
active suspension capable of producing a matical computations can be used to obtain the
comfortable ride is therefore intimately Christoffel symbols of the first and second
related to developing a system simulation kind for 12 orthogonal curvilinear coordinate -

that faithfully predicts the complete systems. J. C. Howard [4,5] has shown how *

*vehicle motion. FORMAC can be used to derive the equations of
motion of a particle and the Navier-Stokes 40

Predicting the ride characteristics of such equations in any curvilinear coordinates.
* -a system involves deriving the coupled three With these efforts to lead the way, a similar

dimensional equations for the vehicle and the procedure is developed here to derive the
________________governing equations for a vehicle using the

*Present Address: Argonne National formula manipulation capabilities of the
Laboratory computer. Although this task relied on the
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FORMAC language more recent work with MACSYMA rests mainly upon the concept of the metric
[6] would also provide a useful language with tensor and the definition of differentiation in
which to carry out this type of system curved space. A brief description of these two
modeling. concepts follows.

The procedure utilized here assumed that The Metric Tensor of a Space
the vehicle can be described by a system of
connected rigid bodies. The topology of the Any point in space can be determined by its
system is specified by means of a path matrix coordinates in an orthogonal Cartesian system of
describing how the rigid bodies are intercon- axes and we denote such a system by (y, y

2 ,
nected. Body-fixed coordinates are chosen for y3). Now consider a functional transformation
each body and a transformation matrix is defined ." .,

.*, that allows a vector fixed in the body to be r_ Zr(yt , (1)
transformed into inertial space. Using this
information, an algorithm has been written that from the Cartesian system and examine what kind
develops an expression for the systems kinetic of coordinates we obtain. If the Jacobian of

ofenergy. Since the system is considered to be the taso"
moving in configuration space the coefficients the transformation
of the quadratic terms in this expression are
used as the components of the metric tensor for J " 

_ (xzx, ) I.
the space. All the inertial terms in the J dsJ ,
equations of motion can now be developed, by the dY'i Y )

algorithm, using tensor methods [7]. Potential "0
functions, for any forces that can be derived is different from zero, then equation (1) can be
from potentials, are differentiated and the inverted to give
resulting forces are included in the equations
of motion. Finally, the generalized forces
corresponding to all externally applied forces y e y, ( (2)

J.. are generated. Generic names are given these
forces so that they may be supplied by the r
solving algorithm at execution. The completed Hence, the variables x uniquely determine a
equations are arranged in the form [A] [i] = [B] point in space and are called the curvilinear *

and supplied to a numerical procedure for solu- coordinates of the point.

tion. Consider P to be a point x
r and let Q be a

neighboring point with coordinates xrdxr
This algorithm has been used successfully Denote the infinitesimal distance PQ by dS, the %'

in developing the governing equations for a 5 line-element of length, and express it in terms
mass, 14 degree of freedom representation of a of differentials dx . Referring to the Car-
high speed ground vehicle [8]. However, the tpsian system in which the coordinates of P are
algorithm is general and could be used to y and those of Q are y + dy r the element of
generate the governing equations for any system length is
of rigid bodies that has a tree-like topology; 2

the limiting factor being the cost of computer dS = (dy')2 (dy_9), (dy3)-
time to carry out the computations.

Summation
This paper presents a detailed description 2= cY'dY "  Convention (3)

of the methodology and algorithm that has been
developed to generate governing dynamicalequations.o-B dy ' dy-.* *_i.J

Preliminary Considerations But d _ d%

As an introduction to configuration space,
consider a space of three dimensions in which
the position of a point mass, P, is determined so that .
by three coordinates, X, Y, and Z. To each S 2' d. " ,..'-d"

configuration assumed by this mechanical system d X ar -- 4'
there corresponds a point in space. When the

mass moves the coordinates describing its The term n is called the metric tensor (7) of
position c3ange, and each set of coordinates the spacegnd it is known to be symmetrical, a

; -~ represents a distinct point in space and a fact which will be useful later.

configuration of the mechanical system.
Thus, the whole evolution of the mechanical The Covariant Derivative

k .system is known by calculating the trajectory
representative point P in space A covariant tensor, a by definition has

X, Y, Z. This process of reducing a problem the property that
- in analytical mechanics into one of cal- - 'r '4'V p

culating a trajectory in configuration space Zst- s (5)
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In dealing with a generally curved space, a Euclidean space. The masses can be subject to
fact should be mentioned about equation (5) external forces and their mutual interaction can
which would not arise in the more familiar case obey arbitrary lays. The 3N coordinates of,.. .

-s in these N points can form a hyperspace of 3Nr '- of Cartesian tensors. Coefficients lxn/al s inthsNponsanfr hpesaeo5 ,.. ,
oCreatnr. ofc ts xdimensions which is called configuration space.
equation (5) are functions of xr and therefore As long as the different moving points remain--

au free, our space necessarily has the 3N dimen-i np st sions and remains Euclidean. However, this
two sets of quantities satisfying equation (5) system may be subject to constraints. Certain I o

rfor one point in x, the equations will not points are constrained to move on a given curve.fogenra be true at other points, In other or surface. Others must remain a fixed distance %
geeal from certain moving points.

words, a is a tensor at point x and is not,
i n What is the meaning of a condition of this
in general, a tensor at any other point. kind from the geometric point of view? The

J ": Anticipating the development a little, the system of N real points is represented by a .. ' ,problem is to derive an expression for the single fictitious point P with coordinates X, Y,

covariant derivative of a tensor, since this Z . .n' Yn' Zn in a space of 3N dimensions.
derivative is of fundamental importance in the The whole evolution of the system will be known

*.. expression of Newton's Law in curved space, when the trajectory can be calculated for the -
representative point in its space. The intro-

To define a derivative, the value of a duction of a holonomic constraint requires the
frunction must be computed at two neighboring point P to remain on a certain hypersurface.
points an infinitesimal distance apart. For a This point now moves in a reduced space which
curved space, in moving to the neighboring has only 3N-1 dimensions. The reduced space

. point, not only will the function of interest generally loses its Euclidean character and is
* change its value due to a change in its ar- curved. To study the motion of the represen-
* guments, i.e., (xi * x dxi), but it may change tative point P in this curved space, use must""e t , i e , (X 4d , bu t m y c a g be made of Riema nnian Geometry [7].

due to changes in the coordinate system being b
used to describe it. For example, consider the. -known motion in curvilinear space of a point A fundamental characteristic of a Riemann
knw space is that it possesses a covariant metric -.

x (t). This moving point displaces with itself tensor of the second order, which is sym-
i metrical. Denoting this tensor by g the

a contravariant vector u The question, then, , the
is what will be the true variation of the metric form can be written as .,.'%.

vector as a function of time. The customary way
of finding an answer to this problem is to d5 (7)
introduce the concept of a parallel vector rs

field. Figure 1 represents the displacement of Brillouin [7] has shown that given the expres- *'. %
the vector u parallel to itself, to P'. At sion for the kinetic energy for a system of
P' two vectors are now defined, the difference bodies, the expression can be used to define the .

of which is called the absolute differential (or metric of the configuration space
covariant differential). This, then, is a
measure of how the vector changes while moving d 5 /.1, dg, rd:S
from P to P'. Carrying out this procedure

leads naturally to the covariant derivative of a or

vector function. The results are a covariant */dS)

derivative of a covariant vector. T= dtJ-2 =-Mr s  s (8)

ik"j (6a)-Thus, once the kinetic energy expression for the
-. ?rsystem has been developed in the form of equa-

tion (8), a metric can be defined for the
and a covariant derivative of the contravariant configuration space. Again, Brillouin has shown
vector that taking equation (8) as the definition of

D, d ' the kinetic energy and applying Lagrange's
Dz *- '.jk (6b equations gives

The preceding equations tell how to proceed in dt 2
finding the rate of change of a vector as it

moves in a general space. The term r k is the where the notation T 1 M h was used for
Christoffel symbol.

convenience. This result is immediately sim-
and the Geometry of Dynamics plified by using the definition of covariant .

D•a.csderivative (equation (6a)). The details can r
-'. ~be found in Ref. [7]. Thus. - 2

Consider a system of N mass points. These b o iR 7 Ts
points move in ordinary three-dimensional
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'd~f The kinetic energy of any point mass moving in
M'. ("-. space is then

T 

(11)
.. t V aAV 2m -,.

(9) where Vi is the inertial velocity. With the

help of equation (10) the position vector to the

These are the equations of motion for a mechan- mass point can be written as: .

" ical system in terms of the generalized co-
* ." ordinates being used to describe it and the A = ,4" .' " ) . -

elements of the metric tensor for the config- Tevlctbeos
uration space in which it moves. The velocity becomes:

t"'

Once the generalized coordinates have been - ' O

selected and the kinetic energy has been derived ,
in the form of equation (8), the first two terms The velocity squared is:
of equation (9) can be used to derive the 0_

*'., "inertial forces." The terms containing, V, D Y j - , r *s
generate forces derivable from potential r-1 Sri
expressions and Q. is the generalized forcei The translational kinetic energy of a system of
generated by all applied external forces, particles is: "

- The most useful feature of equation (9), as - - .L ?',--

"*" opposed to using Lagrange's equations directly, 2 - , d9  -.
is that differentiation with respect to time has If the system happens to include rigid bodies, .

• been completed. Differentiation with respect to then the kinetic energy is stored in two modes,
the generalized coordinates is all that is rotationally and translationally. The system's
required and is much simpler to carry out using kinetic energy would now be expressed as:

-' FORMAC. In addition, the coefficients of the R,~ 7 . .0

generalized accelerations and velocities appear 7--- Z ' '
in an orderly fashion which greatly facilitates ,' s.1 sL " -
the arrangement of the resulting equation in the (12)

form [A][X] = [B] needed by a solving algorithm. • i" "

The Inertial Terms But this is precisely the form of equation (8)
with

The first step in the derivation procedure , +
is to develop the system's kinetic energy in the Mr. = ( -(in - '' ' " - i (Z) (13)

* form of equation (8). Next, any forces which , ,
"* can be derived from a potential are computed.

These potential functions are to be supplied by ThisEq. (13), is an expression for the - '
. the user as input. Finally, the generalized components of metric tensor for the configu- " J1
. forces, QA, corresponding to the externally ration space in which the mechanical system

applied forces are derived. The completed moves. Again, the pi is the position vector to

equations are then punched out in FORTRAN in the the i body's center of mass, and (wq i is

form [AJ[X] = [B]. a vector component of the ith body's angular
".'," ~velocity. :- .

Consider a mechanical system consisting of velocity
R rigid bodies which are connected in any To construct Fi for any body, the vector
manner. The only restriction on the system is i

* that topologically it must form a tree (from any must follow along the tree-like structure from

body of the system to any other both there is a the origin to the body of interest. To ac- O

unique path - a unique system of other bodies). complish this, an n x m path matrix is provided. .

It is evident that the degree of the system The ith row of this matrix consists of the
depends not only on the number of bodies in- sequence of body numbers to be followed in

* volved, but also on how the motion of each is c. ..to h$e
restricted physically. Thus, a system of R constructing the vector to the ith body's center
rigid bodies with p equations of constraint of mass. There are as many columns as the V.

have only 6R-p independent degrees of freedom, maximum number of bodies in any tree.

Assuming that satisfactory generalized co- C
ordinates can be determined the transformation Consider two adjacent bodies in the system.
equation relating the position coordinates of Figure 2 shows that the vector from the inertial

the R bodies to their generalized coordinates coordinate system to the ith body's center of - .%.
are: mass has already been formed and the increment

* X T . which takes us to the i + I body center of mass
(10) (CM) is about to be added. The information *.- .
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needed to do this is the position of the [i + 1) position vector (equation (14)). These terms ' .
CM in the body-fixed coordinates of ith body are now combined as prescribed by equation (15)
Thus, the position vector in matrix form is to generate the partial derivatives of the

elements of the metric tensor, and these, in[,|] *P+ [Tj1 [LCG]. turn, are combined according to equation (9) to
#?CM LJCM ~ 'give the inertial terms.

where [T]i is the transformation matrix which Potential and Generalized Force Computations

transforms the components of the vector given in The expression, equation (9), has two terms

the ith body fixed coordinates into the inertial which are the derivatives of potentials V and W.
space. Thus, once the sequence of bodies to be These functions are supplied as input data
followed is given for a particular body, its if any forces can be developed in this manner.
position vector can be constructed as: (note Their derivatives are taken with respect to all
the shift in index to accound for if 1). of the generalized coordinates and are included

SA'JOO ,W, rN as terms in the [8) matrix.

[" : [Lc&, + [T] ULcI. The generalized force Q is calculated from ".. "
J' -the following formula,

and its partial derivative: . _. .
~ _ d~CC , d[jL' [Lcc]Z . L Q

d9:4 j
= 2 (14)

where Fi is an externally applied force which

,[7l, acts on the i body. In this program, these .*. '
forces are never defined. At execution, a -

solving algorithm will have to be provided which % .SIt should be restated at this point that %-_-.6.'P.

the reason for generating the displacement will generate these forces as a function of the '-'-

vector is to develop the coefficients of the generalized coordinates. The @ is the vector,

metric tensor equation (13). These factors in inertial space, to the point of application
are then used in equation (9) to compute the of the force Fi. Finally, the generalized
inertial terms in the equations of motion. As force Q is the sum over all of the external
the developments of the algorithm progressed,
it became convenient to compute not the forces of the inner product of the applied force ...

but rather 2sinceand the partial derivative of this position -. .Pi. but rather Dp-i/3q , 
D2Pi /(Dq )2 , since vector. '' .%%

thege are the terms required to construct

M ars r /3r q X". The partial derivatives of the As with the kinetic energy expressions, the

metric tensor are then: key computation is the development of the vector --. -

2-/ from the origin to the point of application of ,-
dA1r A- d_ ' d Ap - _ " the force. To facilitate this computation, the

A2. r A s path matrix is again used which specifies the '.
sequence of bodies between the origin and the ,
position of the force. Using this sequence ofL- "body numbers, Nl, N2,...,Ni, the program logic

A 1 49 I coulddeeothexrsin

The flow diagram, Fig. 3., illustrates the logic [-P] L'] J L
for computing the entire set of equations. The
logic for the inertial terms is shown in Fig. 4. However, the term which is needed is the

Prior to the starting point of this diagram, the partial derivative, -F /aq' , and, as with the
local position vectors, transformation matrices, i

* and angular velocity vectors have been differen- inertial terms, it is constructed using the
tiated with respect to all the generalized existing partial derivatives. Thus,
coordinates. If a particular derivative evalu-
ates to -1, 0, 1, this value is used directly, ,, i[LCG, 0 '_

otherwise the expression is atomized and the . . + AM c d

generic name of the derivative is used in the % L , '"

succeeding calculations. This process increases
the comprehensiveness of the final equations. d L~j.]"[L c"G1  9 [ L i"

4 -- [r +- LLFOR~
Consider, now, the situation where the -

inertial terms for the q X degree of freedom are dELFOR]. 1
being generated. For each body in the system, " [Ti] - . (16)
the previously generated partial derivatives are A

combined to give the partial derivative of the
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Finally, the inner product term is computed for The interconnection of sprung and unsprung
each of the active forces to give Q. of equation mass is accomplished by means of both linear %

springs and dampers and non-linear springs and *p'%° .,
S (9). The flow diagram of the logic used to linear dampers. The latter case is presented "''

-'compute the generalized forces is given in Fig. l r e Trcenco t in Ref. 8. A more complex suspension, sug-
S.gested by Chiu [10] and others [11, has not

been included at this time. Once experimental
§Seialization of the General System to Repr- data for validation are available, a logical %

extension of the simulation would be to in-

The previous sections discussed the general corporate a more advanced suspension model.%
approach which was followed in generating the The Structure
governing equations for a system of rigid Thetrutur"! , ..

bodies. To simulate a TACV, a specialized
.* system is assumed consisting of one rigid body, The generalized forces which acts on the
- the sprung mass, and four point masses. The vehicle have as components the externally

FORMAC algorithm, was used to generate the applied forces FORX2,., .. These forces are
governing equations, and the result is presented the contact forces acting at the interface
in Ref. [8]. between the vehicle and the structure over

which it passes. To compute these forces, it is
Figure 6 is a schematic drawing of the necessary to compute the position in inertial

vehicle model illustrating the coordinates, space of each of the contact centers, and, in .
Four coordinate systems are defined in this addition, the dynamic response at this par-
figure. The inertial coordinate system, XYZ, ticular point, all at the same time. The vector
which is fixed is space, initially X'Y'Z', has sum of these two quantities then can be used to

" its origin at the sprung mass C.G. with its axes compute a first-order approximation to the
along the sprung mass principal axes of inertia, contact forces. In any case, it is necessary
The inertial coordinate system is also used as to be able to compute the dynamic response of
the terrain coordinate system in which terrain the elevated structure.
elevation and displacement are defined.

The solution presented in Ref. 8 computes
" The beam coordinate system, XbYbZb, is the dynamic response of the beam for an ar-
%. aligned with the inertial system, but has its bitrary distribution of pressure which is moving

origndiped t isrtian em u in h s itve at constant velocity. It has been specializedorigin displaced a distance a2 in the positive for the case of two distinct pressure patches of ,.""-
X-direction. The vehicle is assumed, at timezero, to be traveling at constant velocity in constant magnitude, separation, and length.the positive X-direction with the front wheels This case is representative of the type of

tersiti e - emo loading which a TACV would produce on its
just entering the beam. guideway. The derivation presented in Ref. 8

Figure 6 also illustrates the generalized follows closely the work of Wilson [12] as

coordinates used to describe the vehicle motion. presented in the Shock and Vibration Bulletin.

X,Y,Z are the coordinates of the sprung mass ,clso

C.G. in the inertial system. D. (i = 2,3,4,5; Conclusion
iJ

j = 2,3) are the displacements of the point An algorithm has been written, using the
masses relative to the sprung mass coordinate FORMAC language, to derive the governing equa-

* system. Their zero position is taken as the tions for a five mass representation of a high ",e .*

point where the secondary suspension produces speed ground vehicle. This paper presents the . -.,
zero force. In general, the vehicle is mathematical formulisms used to reduce the
composed of five masses (one rigid body, and Lagrangian method to a workable computer program
four point masses) with 14 degrees of freedom as well as the details of the computational .
The point masses are capable of moving in the procedure.
y'- and z'-directions (in the sprung mass

coordinate system), but not in the x'-direc- One further point should be made regarding, -

tion. The entire vehicle, however, is capable the generality of this method, In the vehicle
of three-dimensional motion, problem discussed in detail here, the generalized

coordinates are chosen as the three components~ ,*
The orientation of the rigid body is of the position vector to the sprung mass C.G. .

described by the three Euler angles, 0, e, 0, and the corresponding Euler angles. As a result,
(see Fig. 7). Table I gives the definition of the sprung mass will have the full complement
these angles. This transformation matrix is of six coordinates specifying its position. In
used extensively in the derivation for trans- addition, all guiding forces acting on the S
forming vectors given in the sprung mass co- vehicle are considered external forces and
ordinate system into vectors in the inertial therefore are adequately accounted for in the ..
system. The definitions presented here are procedure used to generate the generalized
consistent with aircraft stability notation, and forces. Therefore, because of the choice of
can be found to Etkin [9]. coordinates and the method used for accounting

for the forces acting on the system, constraint
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equations do not appear in this problem. How- , 0, Euler angles which describe the .

ever, this situation in general need not be the orientation of the sprung mass in ....

case. When constraint equations do appear they inertial space

can be handled using the method of Lagrange
multipliers. IxfIyV,Iz, Principal moments of inertia of

the sprung mass. Products of 0
Consider the case of a kinematic con- inertia are zero since XI-Y'-Z' is

straint of the form: a set of principal coordinates. %

1ak dq M Mass of the sprung mass.

Such a constraint can be accounted for by i 'Wheel" index
the inclusion of the term~ ~ iK 3  spring rate: ith "wheel"

.."" £ a~~~k CKi2 CKi Rail-spring rate...,,.%". .

'.., in the [B] matrix and the addition of the C-"Ralsrnrt
'-" differential equations C 2  C Damping rate: ith "wheel"

I aLk 4k= 0 i 2-left front 4-right rear"'- -right front S-left rear

to the equations that have already been

developed by the FORMAC algorithm. Geometric grs' Mrs Components of a metric tensor
constraints can also be handled in the same

".- fashion since the equations of the form X., ".
f(q1 ...q9) - 0 are equivalent to the differen- q Generalized coordinate

tial equations mi  Mass of body i

- 0[ Inertia matrix of body i

[Ti Transformation matrix for trans-
The resulting differential equations as ith

well as the solution procedure used to solve forming coordinates in the i-.
them have been left to the much more detailed body fixed coordinate system to
analysis of Ref. 8. inertial space

[LCGli 4 1  Position vector in Ith body fixed
NOMENCLATURE coordinate system to the center of

mass of body (I + ). .
X, Y, Z Inertial coordinate system. th

Coordinates of the sprung mass [LFOR]I Position vector in i body fixed
C.G. in the inertial frame coordinate system to the point of .-.

application of the resultant
' X',Y',Z' Moving coordinate system fixed in external force acting on the body

the sprung mass. The coordinate i
axes coincide with the principal I-.

axes of the sprung mass so that QX Generalized force corresponding to
% products of inertia are zero. th dreofe%, ~ ~the At degree of freedom .. .

ai,bi, Coordinates of a point in the Position vector, in inertial
sprung mass coordinate system. Positionvel,
Tispint iss takedinaste spring space, to the center of mass body-, This point is taken as the spring i(same as Oi except given in

wheel attachment point when the iv
spring is at its natural length, component for m)

ith 'Wheel"deflection coordinate, (W[i  Angular velocity of rigid body i, ..%-,
UP is in the Y' direction, equal to % % %

a is in the Z' direction, [(i- n ( cos *cos,,q),

relative to the sprung mass
coordinate system. ('cos cos 6- - n#)]

Pi Displacement vector in the in- expressed as

ertial frame of the i wheelcenter a [Pl i .  
( '; '/ *(~) r '" -';?

Components of the transformation %

ij matrix [T].
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Tab~e I

TRANSFORMATION MATRIX
(Reference 7)

!: ~~~-"
.Cos9 Cos I.-cos 3,, P, 0,n s, cos I 51n sm, Cos 0 5,,,e cos -

*•A.- .o.

511 9,, C o -, q9scos gs. .

NOTE:

THE POSITION OF THE VEHICLE IN THE SPACE COORDINATE SYSTEM IS DEFINED

BY THE COORDINATES OF THE SPRUNG MASS C.G. (X¢, Y,.,, Zl ), AND THE ORIEN.
TATION OF THE VEHICLE IN THE SPACE FIXED COORDINATE SYSTEM IS DEFINED BY

THE EULER ANGLES(Ve, ) ABOUT THE Z, Y, X AXES OF THE VEHICLE
COORDINATE SYSTEM TAKEN IN THE ORDER p, e .•

%.%
THE TRANSFORMATION MATRIX FOR TRANSFORMING COORDINATES IN THE

-.. VEHICLE COORDINATE SYSTEM INTO COORDINATES IN THE SPACE FIXED COORDI- %

NATE SYSTEM IS GIVEN ABOVE.
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